May 2015

US 160 Access Study Town of Bayfield

AO
$\underset{\text { Department of }}{\text { COLOR }}$
Department of Transportation

US 160 Access Study Town of Bayfield

May 2015

Prepared for:

Town of Bayfield
P.O. Box 80

1199 Bayfield Parkway
Bayfield, CO 81122
Chris La May, Town Manager

Colorado Department of Transportation
Region 5 - Traffic and Safety
3803 North Main Avenue, Suite 100
Durango, CO 81301
Michael McVaugh, P.E., Traffic and Safety Engineer

La Plata County
1060 Main Avenue, Unit 104
Durango, CO 81301
Jim Davis, P.E., Director of Public Works

Prepared by:

Stolfus

Stolfus \& Associates, Inc.
5690 DTC Boulevard, Suite 101W
Greenwood Village, CO 80111
Andrew Amend, P.E., Project Manager
SAI Reference No. 13021

Table of Contents

LIST OF ACRONYMS I
GLOSSARY. II
EXECUTIVE SUMMARY IV
1.0 INTRODUCTION 1
1.1 Project Background 1
1.2 Project Coordination 2
1.3 Public Involvement 3
2.0 ACCESS MANAGEMENT - BENEFITS, PRINCIPLES AND TECHNIQUES 4
2.1 Access Management Benefits 4
2.2 Guiding Principles 5
2.3 Techniques 5
3.0 EXISTING CONDITIONS 8
3.1 Land Use Characteristics 8
3.2 Highway Characteristics 8
3.3 Access Category 9
3.4 Existing Access Inventory 9
4.0 EXISTING TRAFFIC CONDITIONS 11
4.1 Existing Traffic Operations 11
5.0 FUTURE TRAFFIC CONDITIONS 15
5.1 Traffic Growth 15
5.2 Future Traffic Operations 21
6.0 ACP DEVELOPMENT AND EVALUATION 23
6.1 ACP Development 23
6.2 Evaluation Results 23
7.0 PLAN RECOMMENDATIONS 25
7.1 ACP 25
7.2 Other Recommended Improvements 38
8.0 IMPLEMENTATION 39

List of Figures

Figure 1. Vicinity Map 1
Figure 2. Existing Traffic Volumes 13
Figure 3. 2035 Traffic with Existing Roadway Network 17
Figure 4. 2035 Traffic with ACP Improvements 19
Figure 5. US 160 Access Exhibit 27
List of Tables
Table 1. Eastbound Speed Limits 8
Table 2. Westbound Speed Limits 8
Table 3. v/c Ratios in CAP-X 11
Table 4. v/c at Existing Intersections 12
Table 5. Future v/c Comparison 21
Table 6. Evaluation Compatibility Summary 24

Appendices

Appendix A - Public Outreach
Appendix B - Existing Access Inventory
Appendix C - Traffic Methodology and Data Analysis
Appendix D - ACP Methodology and Evaluation Process
Appendix E - Intergovernmental Agreement

List of Acronyms

AASHTO	American Association of State Highway and Transportation Officials
ACP	Access Control Plan
ADT	Average Daily Traffic
ATR	Automatic Traffic Recorder
CDOT	Colorado Department of Transportation
CR	County Road
EIS	Environmental Impact Statement
FHWA	Federal Highway Administration
IGA	Intergovernmental Agreement
MP	Mile Point
mph	Miles per hour
MUTCD	Manual on Uniform Traffic Control Devices for Streets and Highways
ROD	Record of Decision
STIP	Statewide Transportation Improvement Program
US	United States Highway
v/C	Volume-to-Capacity ratio

Glossary

$3 / 4$ Movement Access - An access that is configured to accommodate partial movements (i.e. left-turn in or out, right-turn in, and right-turn out)

Access - Any driveway or other point of entry and/or exit such as a street, road or highway that connects to the general street system

Access Category - one of eight categories described in Section Three of the State Highway Access Code, determining the degree to which access to a state highway is controlled

ACP - A plan which designates access locations and levels of access for the purpose of bringing those portions of roadway included in the planning area into conformance with the highway functional classification to the extent feasible

Access Management - Systematic control of the location, spacing, design, and operation of driveways, median openings, and street connections to a roadway

Access Permit - Means by which access improvements are reviewed, approved and constructed in accordance with the State Highway Access Code

Average Daily Traffic Volume (ADT) - The total 24 -hour volume of vehicular traffic at a particular location measured in vehicles per day

Driveway - An access that is not a public street, road, or highway
Full Movement Access - An access without turn restrictions
Functional Intersection Area - The area beyond the physical intersection of two controlled access facilities that comprises decision and maneuver distance, plus any required vehicle storage length, and is protected through corner clearance standards and connection spacing standards

Intergovernmental Agreement (IGA) - A legally-binding agreement between two or more governmental agencies

Issuing Authority - The entity responsible for issuing access permits for a segment of state highway. The board of county commissioners, the governing body of a municipality, or the department of transportation may be the Issuing Authority.

Volume-to-capacity ratio (v/c) - A calculated measure indicating the quality of traffic operations by comparing the volume of traffic demand for an intersection or specific vehicle movement to the maximum amount that can be accommodated.

Median - That portion of a highway separating opposing traffic flows
Right-in, Right-out Access - An access that is configured to accommodate only right-turns in and right-turns out

Right-of-way (ROW) - The entire width between the boundary lines of every way publicly maintained when any part thereof is open to the use of the public for purposes of vehicular travel

State Highway Access Code - A manual containing the access regulations that apply to state highways within Colorado

Turning Movement Count - A tally of the number of vehicles turning left, right, or traveling through an intersection, usually reported for a one-hour time period

Executive Summary

US 160 serves as the most prominent east-west regional transportation route for southern Colorado. In October 2006, the Federal Highway Administration (FHWA) issued a Record of Decision (ROD), concluding the Environmental Impact Statement (EIS) process for approximately 16 miles of improvements on US 160 from Durango to just east of Bayfield. Subsequently, in 2013 the Town of Bayfield and CDOT collaborated, in cooperation with La Plata County, to develop an Access Control Plan (ACP) for US 160 between Gem Lane and the Town's eastern limits at approximately Mile Point 103.82. The intent of this plan was to address recent and anticipated growth in the area while maintaining alignment with project goals agreed upon by the partners. The ACP for US 160 was prepared with consideration of the previous ROD and current conditions.

The Colorado Transportation Commission assigns a category to each state highway segment within Colorado. US 160 from MP 100.3 to MP 103.8 is categorized E-X: expressway and major bypass. This segment of US 160 falls under a combination of Town of Bayfield and La Plata County jurisdiction. Land use within the project limits is predominantly rural residential and agricultural outside of the urbanized areas of the Gem Village and Bayfield. There are currently 39 full movement access points on US 160 within the study area.

Since no development plans had been submitted to the Town or County at the time of traffic forecasting, a generalized traffic growth rate consistent with both the EIS and current CDOT estimates was applied to determine traffic volumes at the 2035 planning horizon. Localized growth is included in this estimate, but it is recognized that development of various magnitude may occur at multiple locations within the corridor. An aggressive local growth scenario focused on the US 160/Bayfield Parkway (West) intersection was analyzed in the 2013 US 160 Traffic Feasibility Study. Similar growth projections are not likely to occur across the entire corridor within the 20-year planning horizon.

These future traffic estimates were used in conjunction with highway engineering principles to form a draft ACP. Access for parcels located between major intersections was either limited or provided via a local road. In cases where multiple access points serve a single ownership, access was reduced to one per ownership. Shared access between parcels was maintained to the extent feasible.

The draft ACP was then presented at multiple public open houses. Attendees consisted of corridor stakeholders including property owners, tenants, potential developers and the general public. Improvements incorporated into the Plan based on public comments include a new connection to the future US 160 alignment with CR 507 instead of Homestead Drive along with modifications to conditions at specific access points. The ACP provides that access to specific properties will not be closed without alternative access to the public street network.

Once the ACP was refined through the public process, a compatibility index was used to determine whether established project goals were met. This evaluation was conducted using a simple rating system identifying the ACP's treatment of each objective as favorable, neutral or unfavorable. Overall, the ACP rates favorably by improving upon the "no ACP" alternative for nine of the seventeen criteria evaluated. ACP adoption by the three entities (Town of Bayfield, La Plata County, and CDOT) is recommended along with execution of a three-way Intergovernmental Agreement (IGA).

1.0 Introduction

1.1 Project Background

United States Highway 160 (US 160) serves as the most prominent east-west regional transportation route for southern Colorado. The highway enters the southwest corner of the state and continues on to Interstate 25. After jogging to the south along the interstate, US 160 continues east across the border with Kansas. In southwest Colorado, US 160 is the primary connection between communities such as Cortez, Durango, Pagosa Springs, and Alamosa. The Colorado Department of Transportation (CDOT) is responsible for managing the highway throughout the state.

Shown in Figure 1, the Town of Bayfield is located along US 160 in La Plata County. The Town's western limit crosses US 160 at approximately the Pine River. The eastern limit crosses US 160 at

Figure 1. Vicinity Map
approximately Mile Point (MP) 104.
In October 2006, the Federal Highway Administration (FHWA) issued a Record of Decision (ROD), concluding the Environmental Impact Statement (EIS) process for approximately 16 miles of improvements on US 160 from Durango to just east of Bayfield.

Specifically, the ROD states that the purpose of the project was to:

- Increase travel efficiency/capacity to meet current and future needs
- Improve safety for the traveling public by reducing the number and severity of accidents
- Control access

Subsequently, in 2013 the Town of Bayfield and CDOT collaborated, in cooperation with La Plata County, to develop an Access Control Plan (ACP) for US 160 between Gem Lane (MP 100.30) and the Town's eastern limits at approximately MP 103.82 to address recent and anticipated growth in the area. The ACP for US 160 was prepared with consideration to the previous ROD and current conditions.

The purpose of this study effort is to coordinate anticipated growth with the transportation needs of the local community and traveling public. The specific goals for the ACP project are as follows:

- Provide safe, effective, and efficient travel for traffic on US 160.
- Provide a safe, effective and efficient access to and from US 160 for businesses, residents, and emergency responders.
- Maintain compatibility with existing and proposed off-highway circulation routes
- Provide a plan that can be implemented in phases.
- Support economic viability of the project area.
- Maintain compatibility with the intent of previous planning efforts.
- Identify locations and level of access for existing and future highway intersections that balance state and local transportation planning objectives.
- Provide a plan that is adoptable by all entities through a respectful and collaborative partnership.

This report summarizes the study process, analysis, findings and recommendations for access modifications within the US 160 corridor.

1.2 Project Coordination

The project area falls within the jurisdictional boundaries of both the Town of Bayfield and La Plata County. Operations and maintenance of US 160 are managed by CDOT - Region 5. The process was a cooperative effort between the three entities.

The primary project team for the development of the ACP consisted of representatives from the Town of Bayfield, La Plata County and CDOT - Region 5, Traffic and Safety Departments. Coordination with local elected officials and project stakeholders, including property owners, tenants, developers and the general public is described in the next section.

1.3 Public Involvement

Input from corridor stakeholders, including property owners, tenants, potential developers and the general public was a critical element of the project. Multiple techniques were used to engage stakeholders including a presentation to the Town Board, advertised public open houses, acceptance of written comments, and development of direct response letters to individual comments.

The Draft ACP was initially presented to the Bayfield Town Board in an open work session held on July 15, 2014. Multiple public open houses were held at Bayfield Town Hall to present and discuss the recommended Draft ACP for US 160, review access management principles, and gather public input on the draft plans. The first meeting was held on August 14th, 2014. Follow-up public open houses with focuses on Gem Village and Commerce Drive areas were held on September 18, 2014 and October 23, 2014, respectively. A final public open house covering the entire revised Draft ACP was held on December 4th, 2014.

Notifications of the open houses were mailed to the property owners adjacent to the highway via US mail. Additional notifications were sent to business owners and residents in Gem Village and along Commerce Drive for the open houses specifically regarding those locations. Announcements for the open houses were also published in the Durango Herald and/or Pine River Times newspapers to provide community-wide notification of the project.

Exhibits presenting access management principles, the study process, and the recommended draft ACP were displayed at the public open houses. Formal presentations with question/answer opportunities were held at the August and December open houses. Open house exhibits were publically available on the Town of Bayfield website. Comment sheets were available at meeting and online to allow attendees to raise concerns and ask questions. Twenty three people signed in at both the August and December open houses. Open House sign-in sheets, submitted comment sheets, and comment response letters can be found in Appendix A.

2.0 Access Management - Benefits, Principles and Techniques

As defined in the Access Management Manual published by the Transportation Research Board, "Access management is the systematic control of the location, spacing, design and operation of driveway median openings, and street connections to a roadway." Access management along Colorado State Highways is generally administered by CDOT on a case by case basis, as prescribed in the State of Colorado State Highway Access Code. Per Section 2.12 of the Access Code, CDOT or a local authority may develop an ACP for a segment of highway that defines access locations, level of access and traffic control for future conditions. Developing an ACP provides CDOT and the local authorities with the opportunity to develop a single transportation plan that considers multiple access points along a segment of highway as a roadway network rather than as individual access points. Corridor-specific issues such as intersection spacing, traffic movements, circulation, land use, topography, alternative access opportunities, and other local planning documents may be considered in developing an ACP. The ACP does not define capacity improvements, off-network improvements, or funding sources for access improvements. However, local governments often consider off-network improvements for their communities in conjunction with an ACP. The ACP is a long-range planning document that identities access conditions that will be implemented as highway and land-use characteristics change. ACPs for State Highways are adopted by executing an Inter-Governmental Agreement (IGA) between CDOT and the local authorities.

2.1 Access Management Benefits

Access management provides the means to balance mobility along the highway with local access needs. Implementation of access management principles and techniques on State and local transportation networks can provide the following long-term benefits for highway users, residents, and businesses:

Safety - Fewer conflict points result in a reduced number of crashes.
Traffic capacity - Improves conditions for highway through traffic by strategically identifying locations for vehicles to enter and exit the corridor.

Property values and the economic viability - Provides a more predictable and consistent development environment

Encourages development of local streets - Allows traffic to access local amenities without using the highway, thereby providing improved circulation and reduced volumes on the highway.

2.2 Guiding Principles

Access management centers around limiting and consolidating access along major roadways and focusing access for development on a supporting local street network and circulation system. The following guiding principles to access management were applied in the development of the ACP for US 160:

- Limit the number of direct access points to major roadways
- Locate signals and intersections to favor through movements
- Minimize the number of locations where vehicles merge, split, or cross
- Remove turning vehicles from through traffic lanes
- Provide a supporting local street network and circulation system

2.3 Techniques

Several access management techniques, illustrated below, may be used to achieve the principles outlined above and to realize the benefits of access management along US 160

2.3.1 Principle: Limit the number of direct access points to major roadways
 Technique: Connect Adjacent Properties

Connect adjacent properties to provide circulation between properties and increase access opportunities for multiple properties.

2.3.2 Principle: Minimize locations where vehicles merge, spilt or cross

Technique: Install Medians and Islands

Right-in/right-out with raised median eliminates left turn movements between major intersections throughout a corridor.

Right-in/right-out with channelizing island eliminates left turn movements at individual access points.

Directional median opening or a $3 / 4$ movement limits left turn movements to one direction at strategic locations where increased access is beneficial for safety or operational reasons.

2.3.3 Principle: Provide a supporting local street network \& circulation system Technique: Provide Cross Street Access

Relocate access to a side street to:

- Reduce the number of direct access points to the major roadway.
- Provide safe and easy access to a minor roadway intersection with the major roadway.
- Provide opportunities to use an alternate local route, thereby avoiding use of the major roadway completely.

3.0 Existing Conditions

3.1 Land Use Characteristics

The study area encompasses approximately 3.5 miles of State Highway that falls under a combination of the Town of Bayfield and La Plata County jurisdiction. Land use within the project limits is predominantly rural residential and agricultural outside of the urbanized areas of the Gem Village and the Bayfield. Gem Village is part of unincorporated La Plata County and is located at the western edge of the project. In this area, both commercial and single family residential land uses access the highway via the adjacent frontage roads. Within the town limits of Bayfield, residential land use with some commercial properties exist adjacent to the highway. Limited agricultural use also exists within the town boundary.

3.2 Highway Characteristics

The posted speed limit on US 160 ranges from 60 miles per hour (mph) at the east end of the project to 45 mph through the Town of Bayfield. Approximate locations of speed limit changes within the study area are summarized in Table 1 and Table 2.

Table 1. Eastbound Speed Limits

Approximate Reference Point	Approximate Location	Eastbound Speed Limits (MPH)
$100.30-100.84$	Gem Lane to 400 feet east of US 160 Frontage Roads at the east end of Gem Village	50
$100.84-102.43$	400 feet east of US 160 Frontage Roads at the east end of Gem Village) to 1,070 feet east of CR 502	55
$102.43-103.20$	1,070 feet east of CR 502 to 560 feet east of Commerce Drive	45
$103.20-103.72$	560 feet east of Commerce Drive to 500 feet east of Bayfield Parkway (East)	55
$103.72-103.82$	500 feet east of Bayfield Parkway (East) to 1,520 feet east of Bayfield Parkway (East)	60

Table 2. Westbound Speed Limits
$\left.\begin{array}{|c|c|c|}\hline \begin{array}{c}\text { Approximate } \\ \text { Reference Point }\end{array} & \text { Approximate Location } & \begin{array}{c}\text { Eastbound } \\ \text { Speed Limits } \\ \text { (MPH) }\end{array} \\ \hline 103.82-103.50 & 1,520 \text { feet east of Bayfield Parkway (East) to 500 feet east of } \\ \text { Bayfield Parkway (East) } & 60 \\ \hline 103.50-103.21 & 500 \text { feet east of Bayfield Parkway (East) to 560 feet east of } \\ \text { Commerce Drive }\end{array}\right] 55$

The horizontal alignment of US 160 from MP 100.3 to MP 103.8 is generally straight with the exception of two gradual curves, one at MP 101.4 and one at MP 101.8. The elevation profile along this segment of highway is gradual enough to not impede sight distance at any locations. However, the roadside cut slope at MP 102.2 limits sight distance for County Road (CR) 502.

From MP 100.3 to MP 102.6 the highway is undivided with one travel lane in each direction. A westbound passing lane also exists from MP 101.9 to 102.2. At MP 102.6,the highway enters the Town of Bayfield and a raised median is introduced along with auxiliary lanes for the signalized intersection at CR 501. The raised median ends at MP 103.0, however auxiliary lanes are in place at the unsignalized Commerce Drive intersection (MP 103.1).

3.3 Access Category

Section Three of the State of Colorado State Highway Access Code establishes a system of eight highway categories for the purpose of defining the level of access for a highway segment based on the intended function of that segment. The Colorado Transportation Commission assigns a category to each state highway segment within Colorado. US 160 from MP 100.3 to MP 103.8 is categorized E-X: expressway and major bypass.

According to Section 3.7 of the Access Code, the major control characteristics of a highway segment of Category E-X are as follows:

- Provide for interstate, interregional, intra-regional, and intercity travel needs and to a lesser degree, some intracity travel needs. Direct access service to abutting land is subordinate to providing service to through traffic movements.
- Typical spacing of intersecting streets, roads and highways shall be on intervals of one mile. One-half mile spacing of public ways may be permitted to the highway if no reasonable alternative access to the general street system exists.
- No access to private property may be permitted unless reasonable access cannot be obtained from the general street system.
- When allowed, auxiliary turn lanes shall be installed according to the criteria listed by the Access Code.
- Private direct access should be prohibited to any state highway, unless specifically categorized.
- No additional access rights shall accrue, and no additional access shall be provided upon the splitting or dividing of existing parcels of land under the same ownership.
- All access provided shall be done so with the understanding that if the highway is reconstructed, the direct access location may be closed and alternative access may be required by other available means.
- Signals for cross-streets of lesser importance do not need to be optimized equally with streets of greater importance.

3.4 Existing Access Inventory

There are currently 39 access points on US 160 within the study area. All existing access points are full movement. 15 of the access points provide field access, 4 provide business access, 14 provide public road access, 1 provides private road access and 7 provide residential access. Approximately 23\% of the existing access points are within or abutting Town of Bayfield limits.

For the purpose of identifying the location of access points for this plan, all access points are defined by the approximate reference point (in hundredths of a mile) shown in the 2013 CDOT Windshield for Route 160A. All access points are located at the approximate centerline of the access (+/-50 feet). A complete inventory of existing access points is provided in Appendix B.

The following provides a description of the accesses by type:
Public Road Signalized (PRS) - Full movement, signal-controlled intersection providing direct access to a publicly owned roadway. Buck Highway (CR 521) and CR 501 are classified as PRS access points.

Public Road Unsignalized (PRU) -Full movement, stop-controlled intersection providing direct access to a publicly owned roadway. The PRU access points in the study area include the following public streets:

- Gem Lane
- US 160 Frontage Road (South) (MP 100.376)
- CR 507
- US 160 Frontage Road (South) (MP 100.555)
- US 160 Frontage Road (North) (MP 100.799)
- US 160 Frontage Road (South) (MP 100.799)
- Homestead Drive
- Bayfield Parkway (West)
- CR 506
- CR 502
- Commerce Drive
- Bayfield Parkway (East)

Private Road Unsignalized (PVRU) - Unsignalized full movement intersection providing direct access to one or more private properties. These roadways are maintained privately. There is only one PVRU located at the eastern end of the study area at MP 103.82 and serving multiple properties on the north side of the highway.

Business Access (BA) - Full or partial movement highway access points serving businesses within the study area. These types of access points are typically used multiple times daily by a variety of traffic types. There are a total of 4 BA points in the study area, including two accesses to parks owned by the Town of Bayfield.

Residential Access (RA) - Full or partial movement private highway access points used on a regular basis by limited traffic. These types of access points include single-family private driveways. There are 7 RA points in the study area.

Field Access (FA) - Full or partial movement access points that provide direct access from the highway to agricultural land. These types of access points are typically not well-defined and are used infrequently. There are 14 FA points in the study area.

4.0 Existing Traffic Conditions

Daily traffic counts were collected at ten locations within the study area on Wednesday, August 14, 2013 and Thursday August 15, 2013. CDOT Automatic Traffic Recorder (ATR) data from July 31, 2013 indicated peaks in highway traffic during the two hour periods beginning at 7:00 a.m. and 4:00 p.m. Turning movement counts were collected during those times on August 13 and August 15, 2013 at seven locations along US 160. Existing traffic volumes are presented in Figure 2. Traffic volumes estimated at additional locations based on historic traffic count data provided by La Plata County.

4.1 Existing Traffic Operations

Traffic operations analyses were conducted at all intersections where turning movement counts were collected or estimated. Analyses at unsignalized intersections were carried out using the methods described in the Highway Capacity Manual 2010 (HCM) published by the Transportation Research Board of the National Academies. Rather than typical Level-of-Service analyses, Volume-to-Capacity (v / c) ratio was determined in order to maintain compatibility with the CAP-X - Capacity Analysis for Planning of Junctions (CAP-X) tool created by FHWA. CAP-X is used to evaluate the operations of alternative intersection configurations at a planning level and was applied at intersections where stopcontrol would not yield acceptable operations.

When using the CAP-X tool, v/c results are reported at the three levels shown in Table 3. These levels can also be correlated to those calculated using the HCM in order to qualitatively evaluate operations and determine whether mitigation measures might be needed.

Table 3. v/c Ratios in CAP-X

Intersection v/c	Traffic Operations
$\mathrm{v} / \mathrm{c} \leq 0.75$	Demand is below intersection capacity
$0.75<\mathrm{v} / \mathrm{c}<1.00$	Demand approaches intersection capacity
$\mathrm{v} / \mathrm{c} \geq 1.00$	Demand exceeds intersection capacity

For signalized intersections, v / c is reported for the intersection as a whole using CAP-X. At unsignalized intersections, v/c for the worst performing movement is reported per the HCM. Typically, left-turn or through traffic from the stop-controlled approach performs worst. The results reported in Table 4 indicate that existing traffic demands are well below capacity at all intersections along US 160 in the study area. Calculation output sheets are included in Appendix C.

Table 4. v/c at Existing Intersections

US 160 Intersection	AM Peak Hour	PM Peak Hour
CR 507	0.03	0.09
Homestead Dr.	0.03	0.09
Bayfield Pkwy (West)	0.26	0.38
CR 506	0.03	0.01
CR 502	0.11	0.04
CR 501	0.29	0.31
N. Commerce Dr.	0.28	0.48
Bayfield Pkwy (East)	0.14	0.17

Figure 2. Existing Traffic Volumes

THIS PAGE INTENTIONALLY LEFT BLANK

5.0 Future Traffic Conditions

5.1 Traffic Growth

In the US 160 EIS, future traffic demands were estimated by growing traffic 1.79% per year. Consistent with this growth rate assumption, the CDOT estimate of 20 -year growth at ATR 000217 was a factor of 1.43, which equates to 1.80% compounded annually. A straight line analysis of historical data from the ATR shows August Average Daily Traffic (ADT) increasing from 7,700 in 1992 to 10,600 in 2012. This equates to an annual compound growth rate of 1.60\%.

To provide consistency with the EIS and current CDOT growth estimates, an annual compound growth rate of 1.80% was applied to 2013 traffic counts to predict future highway traffic volumes. At this rate, 2025 p.m. peak hour traffic demands at the US 160/CR 501 intersection are estimated to be approximately 11% lower than projected in the EIS. At the 2035 design year for this plan, traffic demands at the intersection are forecasted to be 3\% greater than the 2025 demands from the EIS.

Daily traffic counts were previously collected by La Plata County on roads in the study area. This data indicates varying growth patterns along the county roads. Using counts between 1991 and 2012, the growth rate on CR 502 was equivalent to 1.45% compounded annually. This historical rate is thought to be reasonably representative of likely growth in the study area and was applied to existing traffic on all county roads.

Since no development plans had been submitted to the Town or County at the time of this traffic forecasting, no specific development within the project area was considered in the projection of future traffic. Localized growth is included in the background traffic projections described above, but it is recognized that development of various magnitude may occur at multiple locations within the corridor. An aggressive local growth scenario focused on the US 160/Bayfield Parkway (West) intersection was analyzed in the 2013 US 160 Traffic Feasibility Study. Similar growth projections are not likely to occur across the entire corridor within the 20-year planning horizon.

The resulting 2035 traffic forecast, shown without the implementation of any public street, highway, or access changes, is presented in Figure 3. This same traffic demand relocated to the future roadway network proposed in the ACP, including highway modifications, future public streets, and access restrictions, is presented in Figure 4.

Figure 3. 2035 Traffic with Existing Roadway Network

this page intentionally left blank

Figure 4. 2035 Traffic with ACP Improvements

this page intentionally left blank

5.2 Future Traffic Operations

Future traffic operations were evaluated for two scenarios using projected traffic volumes in 2035. The first scenario assumes no changes from the existing local street network including access restrictions, additional lanes, and traffic control. The second scenario assumes improvements to the local street network and access restrictions shown in the ACP are implemented. Additional travel lanes called for in the US 160 EIS are also included in this analysis scenario.

Forecasted condition v/c ratios shown in Table 5 reflect the operations of the worst-case movement at unsignalized intersections and the intersection as a whole for signalized intersections. Currently, only the US $160 /$ CR 501 intersection is signalized. This intersection signalized is assumed to remain while all other intersections operate under stop-control without approaching capacity. Southbound left turns from Commerce Drive are projected to operate at capacity during the afternoon peak hour, but will be mitigated with the ACP improvements by redirecting traffic demand to full-movement intersections. Consolidation of multiple existing access points in Gem Village does raise the v/c at CR 507, however traffic at the relocated intersection is not expected to approach capacity.

Table 5. Future v/c Comparison

US 160 Intersection	With Existing Roadways		With ACP*	
	AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour
Gem Ln.	0.07	0.05	N/A	N/A
CR 507	0.08	0.27	0.21	0.44
Homestead Dr./Frontage Rd.	0.08	0.29	N/A	N/A
Bayfield Pkwy (West)	0.63	0.64	0.39	0.44
CR 506	0.05	0.03	N/A	N/A
CR 502	0.23	0.08	N/A	N/A
CR 501	0.46	0.61	0.40	0.44
Commerce Dr.	0.28	1.00	0.23	0.28
Bayfield Pkwy (East)	0.27	0.35	0.20	0.23

*Assumes all ACP, local road, and US 160 improvements are in place

In addition to intersection capacity evaluations, a queuing analysis was conducted at the Commerce Drive intersection to determine if adequate separation from the CR 501 intersection will exist with projected 2035 traffic demands. The intersections are currently separated by approximately 1,930 feet measured from the westbound stop bar at CR 501 to the end of the eastbound median at Commerce Drive. Future demand for the left-in turn movement at Commerce Drive is estimated at 296 vehicles in the afternoon peak hour.

Table 4-5 of the Access Code calls for Expressway category highways to provide left turn lane length sufficient for a taper, deceleration, and vehicle storage. At the posted 45 mile per hour speed, this
equates to approximately 800 feet needed to develop the left turn lane to Commerce Drive. This allows approximately 400 feet between the end of the eastbound acceleration lane from CR 501 and the beginning of the taper for the improved left turn lane at Commerce Drive. This 400-foot separation exceeds the 165-foot perception-reaction distance between intersections recommended in Table 8-3 of the Access Management Manual. Sufficient distance therefore exists from CR 501 to allow left turns to Commerce Drive in the 2035 design year.

6.0 ACP Development and Evaluation

Using traffic volume forecasts developed for the study, findings from the 2013 US 160 Traffic Feasibility Study, input from the Town, County, and CDOT, comments from the public outreach program; and guidance from the State Highway Access Code, an ACP was developed for the project. This plan considers circulation opportunities via the existing and potential future local street system.

6.1 ACP Development

A compatibility index was developed to provide a logical means for determining whether the ACP meets the established project goals. The index identified a set of evaluation criteria that correspond with each project objective, as listed in Section 1.1. The evaluation was conducted using a simple rating system identifying the ACP's treatment of each objective as favorable, neutral or unfavorable. The ACP compatibility index can be found in Appendix D.

The existing inventory of access points was reviewed with existing parcel and ownership information. This review determined which parcels adjacent to US 160 lacked access to the highway, which parcels had multiple accesses to consider for consolidation, and which parcels had access or potential access to an existing or proposed local road. Future public street connections and access points developed in the 2013 US 160 Traffic Feasiblility Study were also accounted for in the development of the plan.

Access solutions were developed by applying access management principles and techniques discussed in Section 2.3. Major full movement intersections were located based on existing traffic volumes, Town planning documents, anticipated growth patterns, and analysis of functional intersection areas. Functional intersection area was analyzed using American Association of State Highway and Transportation Officials (AASHTO) guidance on deceleration and taper lengths and existing speed limits to provide proposed improvements that will meet current design standards.

Access for parcels located between major intersections was either limited (right-in/right-out or $3 / 4$ movement) or provided via a local road. In cases where multiple access points serve a single ownership, access was reduced to one per ownership. Shared access between parcels was maintained to the extent feasible.

The draft ACP was presented at multiple public open houses. Attendees consisted of corridor stakeholders, including property owners, tenants, potential developers and the general public. Improvements incorporated into the ACP based on public comments include a new connection to the future US 160 alignment with CR 507 instead of Homestead Drive along with modifications to conditions at specific access points.

6.2 Evaluation Results

The ACP was evaluated using the compatibility index described above. The results of the evaluation, by objective, are listed in Table 6. Overall, the ACP rates favorably by improving upon the "no ACP" alternative for nine of the criteria evaluated. ACP adoption by the three entities (Town of Bayfield, La Plata County, and CDOT) is recommended as well as creation of an IGA. Adoption by CDOT is also recommended. Details of the ACP evaluation can be found in Appendix D. A graphical representation of the ACP is shown in Section 7.1.

Table 6. Evaluation Compatibility Summary

Project Goal	Evaluation Criteria	Rating
Provide effective through travel for traffic on US 160	Highway LOS	Favorable
	Number of Access Points	Favorable
Provide safe and effective access to and from US 160 for businesses, residents, and emergency responders	Intersection Sight Distance	Favorable
	Intersection v/c	Favorable
	Conformance with State Highway Access Code Auxiliary Lane Requirements	Neutral
	Out of Direction Travel Distance	Unfavorable
	Intersection Crash Risk	Favorable
Maintain compatibility with existing and proposed offhighway circulation routes	Local Route Connectivity	Unfavorable
	Serviceability of Local Routes to Developments and Properties within the Study Area	Favorable
Provide a plan that can be implemented in phases	Funding Opportunities	Neutral
	Phasing Opportunities	Favorable
Support the economic viability of the project area	Business Access	Neutral
Maintain compatibility with the intent of previous planning efforts	Compatibility with Local Planning	Favorable
	Compatibility with the US 160 EIS	Neutral
Provide a plan that is consistent with local intersection priorities	Compatibility with the improvement priorities of Town and County staff	Favorable
Endeavor to provide a plan that is adoptable by all entities	Physical Constraints	Neutral
	Support from Town Board and County Commission	Favorable

7.0 Plan Recommendations

This section presents details of the recommended ACP for US 160. The ACP has been developed with considerable participation from the Town of Bayfield, CDOT, La Plata County, and the public. After evaluating both existing and future conditions, the ACP defines each access configuration in the future. In general, the ACP limits full movement access to major intersections. Access for parcels between major intersections is either limited or relocated to an alternate route/cross street. In addition, highway access is generally reduced to one location per ownership. Where feasible, access is shared between adjacent properties. $3 / 4$ movement intersections are identified at key access points where providing the left-turn movement from the highway improves circulation.

Traffic control measures that may be used to achieve proposed conditions include dividing the highway with unpaved or raised medians, driveway channelizing islands at limited access points, directional median openings at $3 / 4$ movement access points, signage and striping. To avoid turn movement violations and potential enforcement issues, construction of physical access control measures is recommended to divide the highway, potentially as part of construction of the US 160 EIS improvements. Prior to those improvements, turning movement restrictions may occur as dictated by traffic safety or operational circumstances at each access point.

The narratives in this section are intended to serve as a summary of the key features of the ACP while figures provide a graphical representation. A detailed explanation of the control measures for each access in the study area is presented in the ACP Table, Exhibit A of the IGA. Reference the exhibits in Appendix E for specific access configurations and conditions.

Recognizing that this plan is a long-term planning document and not a detailed engineering design, reference point designations are intended to be approximate. As more detailed information is available, these designations may be modified (generally within 0.05 miles of the specified reference point designation) without formal amendment of the ACP.

7.1 ACP

Key features of the ACP are summarized below and illustrated in Figure 5a through Figure 5e. Auxiliary lanes shall be provided at access points as prescribed by the State Highway Access Code. Full movement intersections with potential for future signalization have been identified in the ACP; however, traffic control treatments will be evaluated on a case-by-case basis as future conditions warrant. Potential traffic control may include stop signs, traffic signals, interchanges, or others recognized by the Manual on Uniform Traffic Control Devices for Streets and Highways (MUTCD) published by FHWA.
Traffic signals may be implemented at intersection only if warranted per current MUTCD standards and when funding is available. Once a signal is warranted and until such time as it is constructed, movements may be restricted if operational or safety issues develop.

THIS PAGE INTENTIONALLY LEFT BLANK

this page intentionally left blank

this page intentionally left blank

this page intentionally left blank

this page intentionally left blank

this page intentionally left blank

7.1.1 County Road 507

At the current US 160 alignment, full movement to and from CR 507 will be maintained, potential for future signalization does not exist given the limited distance between the highway and frontage roads. If an operational or safety issue develops prior to realignment of US 160, turn movement restrictions may be required to mitigate those issues. Existing accesses west of CR 507 will be restricted to Right-In, Right-Out or closed and those immediately to the east will be restricted to $3 / 4$ access in order to allow for heavy vehicle circulation.

With realignment of US 160 to the south of Gem Village, CR 507 will be extended to provide a new fullmovement intersection. At the realigned highway, the intersection with CR 507 does have the potential for signalization when warranted under current MUTCD standards. This new intersection also allows for a potential local street connection from the extended CR 507 to Homestead Drive. Upon realignment of US 160, the existing highway could become a locally managed roadway with different access requirements.

7.1.2 Bayfield Parkway (West)

Full-movement access will be maintained on both the north and south sides of US 160 at the existing Bayfield Parkway (West) intersection. A future public street connection to CR 506 is anticipated on the north side of the intersection and was evaluated at a conceptual level in the 2013 US 160 Traffic Feasibility Study. As noted in that study, existing intersection geometry is not suitable for signalization. In order for signalization at the intersection to occur, Bayfield Parkway (West) must be realigned to provide adequate queue storage. While a concept for the Bayfield Parkway (West) realignment to Homestead Drive was identified as feasible, a more detailed engineering study will be required to determine precise requirements and design constraints. If safety or operational issues develop at the US 160 intersection prior to realignment of Bayfield Parkway (West), turning movement restrictions may be implemented to mitigate those issues. Signalization of the intersection will not occur unless warranted under current MUTCD standards.

7.1.3 Commerce Drive

On the north side of US 160 , Commerce Drive will be restricted to $3 / 4$ access when secondary roadways provide a connection to the full-movement Bayfield Parkway (East) intersection with the highway. Alternatively, if US 160 is improved to a divided highway section prior to construction of the secondary roadway connection, access will be restricted and eastbound traffic from Commerce Drive will access US 160 at CR 501. The restriction of movements at Commerce Drive reduces conflict points, which is conventionally understood to reduce the opportunity for crashes. Particularly, the elimination of the more difficult crossing movements has the potential to reduce both crash frequency and severity. In the case that a safety or operational issue at the Commerce Drive intersection with US 160 develops prior to either of those improvements, access additional restrictions may be required to mitigate the issue.

On the south side of US 160 opposite Commerce Drive is a driveway serving the commercial property currently owned by the Bayfield School District and operated by the Pine River Trading Company. Access to this driveway will be restricted to Right-In, Right-Out when a safety or operational issue develops at the driveway or may be restricted when Commerce Drive access is restricted to $3 / 4$ access, as described above. If ownership of the property changes, the current land use on the property is
expanded, or enlarged, highway access will be closed and the property will access the local street system at E. Pony Lane only.

7.1.4 Bayfield Parkway (East)

On the south side of US 160, Bayfield Parkway (East) will remain a full-movement access. North of the highway, full-movement access will be provided to a future public street that will ultimately connect to the rest of the local street network. Future local streets shown in the ACP are conceptual only and will require further engineering study to determine alignments and ultimate connectivity to the roadway network. This intersection does have the potential for signalization when warranted under current MUTCD standards; however, if an operational or safety issue develops prior the satisfaction of signal warrants, turn movement restrictions may be required to mitigate those issues.

Access Control Lines, also referred to as "A-lines," run the length of US 160 through this corridor and restrict access to specific locations. An opening in the A-line for the purpose of access is referred to as a "deeded access opening." The width of the A-line opening provides CDOT with guidance on the level and type of land use potentially allowed by the State. Properties that have an access to their property other than the highway are generally not allowed direct access to the highway even if an A-line opening exists.

Currently, there is not an A-line opening at the proposed Bayfield Parkway (East) north leg access, although an opening at this location is inferred in this ACP. In order to open the A-line for a future public street at this location, the local jurisdiction and/or property owner must submit an application for an Aline opening to CDOT. CDOT in turn must receive approval from FHWA. Section 7.2.11 of the CDOT Right-Of-Way Manual identifies the steps involved for this request. While the IGA and the ACP may be used in support, the application must demonstrate that the opening of the A-line provides "improved highway design, operation and public safety, long term benefits to the highway and necessary highway Right of Way for future highway reconstruction." The ACP identifies new off-system streets and connectivity to help achieve these goals.

7.2 Other Recommended Improvements

In support of the recommended ACP, development of a local street network that serves the areas north of US 160 at Bayfield Parkway (West) and Bayfield Parkway (East) is recommended. At the western location, the local street system should provide a continuous connection from US 160 to CR 506 and ultimately on to CR 502. At the eastern location, the local street system should provide a connection from the commercial area of Bayfield focused at Commerce Drive to the highway. Connections to the north serving existing residential use and future development closer to the highway are also desirable. New connections to the existing private road to the east should also be considered as part of the roadway planning.

8.0 Implementation

The improvements recommended in the Access Study represent a long-range plan that will be implemented in phases as changes and growth occur. Construction of the recommended improvements may be completed using public and/or private funding. Portions of the plan will be implemented based on the following triggers:

1. A property develops, redevelops, or changes use, resulting in a change in traffic operations or safety. In this case, limited improvements at the specific access point may be required by CDOT. As part of the Town or County's development review process, additional transportation improvements may also be necessary to address specific traffic-related impacts created by the development. These improvements will be compatible with the ACP. If a property does not redevelop, the property owner will not be required to construct access modifications. (Private Funding)
2. The Town and/or County obtain funding to complete improvements to a segment of the US 160 corridor or a local route. (Public Funding)
3. State and/or Federal Funds are obtained to complete improvements to a segment of the US 160 corridor as identified in the Statewide Transportation Improvement Program (STIP) and the US 160 EIS. (Public Funding)
4. A safety or operational issue develops that can be mitigated through the implementation of access management techniques consistent with the ACP. Depending on the extent and type of safety or operational issue, improvements may address a segment of the US 160 corridor, a local route, or may be limited to an isolated location or access point. Public funding from any combination of agencies may be obtained to construct improvements. (Public Funding)
5. Any combination of $1,2,3$, or 4 .

Under case 1, a property owner must follow the access permit process as defined by Section 2 of the State of Colorado State Highway Access Code, latest edition. CDOT will remain the issuing authority for US 160. In short, the process requires owners to submit an application for an access permit when developing, redeveloping, or changing the use of their property. Once the access permit is issued, construction plans for permitted improvements must be developed and submitted to CDOT for review. A Notice to Proceed will be issued following acceptance of the Construction Documents by CDOT, thereby allowing the applicant to proceed with construction. As determined by the CDOT Permit Unit, access permits may allow for construction of interim conditions and define requirements for future conditions that match the ACP depending upon individual circumstances specific to each permit.

Under case 2, the Town and/or County may obtain funds either through local government budgeting, grants, or other funding sources. Once funding is available, the Town and/or County will work through the CDOT planning process to develop a highway improvement project. The project will follow the process and procedures for design, construction, and management detailed in CDOT's Local Agency Manual. If a Town/County project is developed off of the State Highway System, such as completion of an alternate local route not intersecting with US 160, CDOT will not be involved in the project. The Town and/or County will administer the project according to their own standards and procedures.

Under case 3, a project receiving State and/or Federal funds must be identified in the STIP. In Colorado, six years of transportation projects and their funding sources must be identified in the STIP. The STIP is updated every four years through a continuing, comprehensive and cooperative process involving the CDOT, FHWA, Federal Transit Administration, Metropolitan Planning Organizations, Transportation Planning Regions, County and local governments.

Under case 4, any agency may identify a safety or operational issue along the corridor through a crash pattern analysis, documented complaints, direct observation or other manner. A single agency or partnership of agencies may obtain funding to implement access management techniques that are consistent with the ACP and specifically address the issue. Depending on the project's lead agency, administration occurs through the local agency process as described in case 2 or through CDOT's process as described in case 3.

Detailed engineering drawings of exact roadway alignments and access improvements will be required as project funding is identified. Details related to storm drainage, utilities, landscaping, environmental issues, pedestrian/bicycle facilities, roadway sections, and other topographic features will be considered during this design process. Environmental evaluations and permitting appropriate to the size, type, and funding of the project will be completed as part of the design phase.

To provide for continued commitment to the access modifications recommended by this study, it is recommended that the City, County, and CDOT adopt an ACP. The ACP identifies access locations and levels of access by reference point for US 160, within the project limits. In addition, the ACP is considered in future local transportation and land use planning efforts that may involve US 160.

In order to formalize an ACP, an IGA must be developed and adopted by CDOT, the Town of Bayfield and La Plata County. An ACP Table that specifically defines proposed conditions for individual access points will serve as Exhibit A to the IGA. A map showing the location of each access point along with off-highway roadways will serve as Exhibit B. In recognition of the plan's long-range nature and the potential for conditions to change over time, a critical element of the IGA is the definition of a process for plan modifications. Exhibit C to the IGA defines this process, which requires mutual agreement of the IGA parties on modifications to the plan. For the US 160 corridor, the process for administration of the plan shall be as described in the State of Colorado State Highway Access Code, latest edition. The IGA with exhibits is presented in Appendix E.

Appendix A - Public Outreach

PLANNING FOR FUTURE GROWTH
 Town of Bayfield, La Plata County \& Colorado Department of Transportation (CDOT)

Invite you to an
Open House
for the
US Highway 160 Access Management Plan
The public open house will provide the community with an opportunity to:

- Learn about planning for future growth along US Highway 160
- Discuss future access points along the US 160 corridor in the Town of Bayfield, Gem Village, and La Plata County with project representatives.
- Provide comments on access points to US 160 .

> Thursday, August 14th, 2014
> 6:00 pm to 9:00 pm
> (formal presentation at 7:00 pm)

Town of Bayfield Town Hall 1199 Bayfield Parkway

For more information, contact: Chris La May, Town Manager

Town of Bayfield
(970) 884-9544
clamay@bayfieldgov.org

PLANNING FOR FUTURE GROWTH Town of Bayfield, La Plata County \& Colorado Department of Transportation (CDOT)

Invite you to an
Open House
for the
US Highway 160 Access Management Plan

The public open house will provide the community with an opportunity to:

- Learn about planning for future growth along US Highway 160
- Discuss future access points along the US 160 corridor in the Town of Bayfield, Gem Village, and La Plata County with project representatives.
- Provide comments on access points to US 160 .

Thursday, August 14th, 2014
6:00 pm to 9:00 pm
(formal presentation at 7:00 pm)

Town of Bayfield Town Hall 1199 Bayfield Parkway

For more information, contact:
Chris La May, Town Manager
Town of Bayfield
(970) 884-9544
clamay@bayfieldgov.org

Bayfield US 160 Access Plan
Public Open House - August 14, 2014 Bayfield, CO

Bayfield US 160 Access Plan
Public Open House - August 14, 2014
Bayfield, CO

COMMENT SHEET
 BAYFIELD US 160 ACCESS PLAN PUBLIC OPEN HOUSE - AUGUST 14, 2014

Name:_(Unl Blutnrele_Representing:Self/Selool Board_numbu Address: \qquad City: \qquad State: \qquad
Zip Code: \qquad Phone: \qquad Email: \qquad
Do you want to be added to the mailing list? Yes \qquad No \qquad Are you a (check all that apply):
\square Property Owner along US 160
\square Business Owner/Lessee along US 160
\square Bayfield Resident in project area
$\square \quad$ La Plata County Resident in project area
E. Member of the General Public
\square Other

What elements of the access plan do you support?
\qquad
\qquad
\qquad

What elements of the access plan do you dislike?

Do you have any concerns about how the access plan will be implemented?
\qquad
\qquad
\qquad
\qquad
Other comments:

Please leave this with us, mail, or email by August 27, 2014 to:
Andrew Amend, P.E. Stolfus \& Associates, Inc.
5690 DTC Boulevard, Suite 101W, Greenwood Village, CO 80111 303.221.2330 (Phone) 303.221.2331 (Fax) andrew@stolfusandassociates.com
Mutant Fir y Mi ta- - 884-2496

COMMENT SHEET BAYFIELD US 160 ACCESS PLAN PUBLIC OPEN HOUSE - AUGUST 14, 2014

Name:
 Representing: Address: \qquad they 160 City: \qquad State \qquad Zip Code: $5 / 122$ phone. $970-884-4101$ Email: \qquad $2 \operatorname{swganc}$ gin com Do you want to be added to the mailing list? Yes \qquad No \qquad Are you a (check all that apply):

Property Owner along US 160
B Business Owner/Lessee along US 160
\square Bayfield Resident in project area
$\square \quad$ La Plata County Resident in project area
(4) Member of the General Public
\square Other

What elements of the access plan do you support?
\qquad
\qquad

Do you have any concerns about how the access plan will be implemented?
\qquad
\qquad
\qquad

Other comments:
\qquad
\qquad
\qquad

Please leave this with us, mail, or email by August 27, 2014 to:
Andrew Amend, P.E. Stolfus \& Associates, Inc.
5690 DTC Boulevard, Suite 101W, Greenwood Village, CO 80111
303.221.2330 (Phone) 303.221.2331 (Fax) andrew@stolfusandassociates.com

COMMENT SHEET

BAYFIELD US 160 ACCESS PLAN

 PUBLIC OPEN HOUSE - AUGUST 14, 2014
Name:

 Gappy HurterRepresenting: SO0 $5+$ Whirs NG WY C. Address 39927 U.S. Hun- 160 \qquad city:BATFIRLD state: CO Zip Code: \qquad Phone: $970-884-410$ Email: GARRY@sWAGMIC.COM Do you want to be added to the mailing list? Yes \qquad No \qquad Are you a (check all that apply):
\llbracket Property Owner along US 160
X Business Owner/Lessee along US 160
\square Bayfield Resident in project area
\square La Plata County Resident in project area
\square Member of the General Public
\square Other

What elements of the access plan do you support?
Baypiblr Parlay intizesbetions

What elements of the access plan do you dislike?
Consider CiR 1507 Access at Gail Village

Do you have any concerns about how the access plan will be implemented?

Please leave this with us, mail, or email by August 27, 2014 to:
Andrew Amend, P.E. Stolfus \& Associates, Inc.
5690 DTC Boulevard, Suite 101W, Greenwood Village, CO 80111
303.221.2330 (Phone) 303.221.2331 (Fax)
andrew@stolfusandassociates.com

COMMENT SHEET
BAYFIELD US 160 ACCESS PLAN PUBLIC OPEN HOUSE - AUGUST 14, 2014
Name: SARYC HosT
\qquad Representing: BAYFIELD AUTO

Address: \qquad City: \qquad State: \qquad
Zip Code: \qquad Phone: \qquad Email: \qquad
Do you want to be added to the mailing list? Yes \qquad No \qquad
Are you a (check all that apply):
\square Property Owner along US 160La Plata County Resident in project area

- Business Owner/Lessee along US 160Member of the General Public
Bayfield Resident in project areaOther
What elements of the access plan do you support?
\qquad
\qquad
\qquad
\qquad
What elements of the access plan do you dislike?
\qquad
\qquad
\qquad
\qquad
Do you have any concerns about how the access plan will be implemented?
\qquad
\qquad
\qquad
\qquad
Other comments:
BAYFIELD SCHOOLS ALOWEV TO OPERATE
OUT OF THERE ALES PERMIT AT COMERCE DR
\qquad
\qquad
Please leave this with us, mail, or email by August 27, 2014 to:
Andrew Amend, P.E. Stolfus \& Associates, Inc.
5690 DTC Boulevard, Suite 101W, Greenwood Village, CO 80111 303.221.2330 (Phone) 303.221.2331 (Fax) andrew@stolfusandassociates.com
please

COMMENT SHEET
 BAYFIELD US 160 ACCESS PLAN PUBLIC OPEN HOUSE - AUGUST 14, 2014

Name: \qquad hand Service sine Representing: hand Service sire Representing: \qquad
Address: PO Bor 2673 City: Durango State:(e)

Zip Code: \qquad Phone: 259.2629 Email: swlsinà c flentia.net

Do you want to be added to the mailing list? Yes \qquad No \qquad Are you a (check all that apply):
\& Property Owner along US 160
\square Business Owner/Lessee along US 160
\square Bayfield Resident in project area
$\square \quad$ La Plata County Resident in project area

- Member of the General Public
\square Other

What elements of the access plan do you support?
safe access

What elements of the access plan do you dislike?
potential access across agricultural lands when

- potential access ants are available and the need to cross This property with a County Rood is 27 questimable value.

Do you have any concerns about how the access plan will be implemented?

\qquad

Other comments:

Please leave this with us, mail, or email by August 27, 2014 to:
Andrew Amend, P.E. Stolfus \& Associates, Inc.
5690 DTC Boulevard, Suite 101W, Greenwood Village, CO 80111
303.221.2330 (Phone) 303.221.2331 (Fax)
andrew@stolfusandassociates.com

Representing: \qquad
Address: $67 /$ C.R.SO6 \qquad City: \qquad State: \qquad zip code: 81122 Phone: $884-904 / 1$ Email: Do you want to be added to the mailing list? Yes \qquad No \qquad Are youa(check all that apply):

- Property Owner along US 160
\square Business Owner/Lessee along US 160
(5) Bayfield Resident in project area
- La Plata County Resident in project area
- Member of the General Public
\square Other

What elements of the access plan do you support?

What elements of the access plan do you dislike?
\qquad
\qquad
\qquad

Do you have any concerns about how the access plan will be implemented?
\qquad
\qquad

Other comments:
\qquad
\qquad
\qquad

Please leave this with us, mail, or email by August 27, 2014 to:
Andrew Amend, P.E. Stolfus \& Associates, Inc.
5690 DTC Boulevard, Suite 101W, Greenwood Village, CO 80111
303.221.2330 (Phone) 303.221.2331 (Fax) andrew@stolfusandassociates.com

COMMENT SHEET
BAYFIELD US 160 ACCESS PLAN PUBLIC OPEN HOUSE - AUGUST 14, 2014

Name: \qquad Harry Goff Representing: WIFE AND SELF

Address: \qquad 1824 EASTLANN city: DURANGO State: CO $247-1153$
Zip Code: 51301 Phone: $749-8741$ Email: \qquad
Do you want to be added to the mailing list? Yes \qquad r No \qquad
Are you a (check all that apply):
[D Property Owner along US 160La Plata County Resident in project area
\square Business Owner/Lessee along US 160Member of the General Public
\square Bayfield Resident in project areaOther
What elements of the access plan do you support?
\qquad
MOST EVERYTHING EXCEPT SEE BELOIN
\qquad
\qquad
\qquad
What elements of the access plan do you dislike?
I FOUL PREFER THE CENTRAL ENTRY INTO GEM VILAGE (I tHiNK IT LINES up wiTt CR SO G). ETERNISE GUV. IS SORT OF SKIPPED OVER OSMAN FROM THE L VEST.
Do you have any concerns about how the access plan will be implemented?
THE MEETING WAS VERY INEORMAMVE. THE BEST ON THIS SUbJECT I have attended. Mile MCVAUGH AND STOLFUS DIDA GeES JOSS AND ANSWETED quESTIONS.
Other comments:
I WOULD LIEETO SEE THE VESIGNTEAM LOCK AT A CONNELTOV BETWEEN BAYEIERD PARL WAY, AT THE WEST END OF THE CHURCH OF CHRIST PROPERLY AND MONTANa VIEW TO THE NORTH. THIS WOULD REQUIRE (contras lear Be氏日w)
() Please leave this with us, mail, or email by August 27, 2014 to:

Andrew Amend, P.E. Stolfus \& Associates, Inc.
5690 DTC Boulevard, Suite 101W, Greenwood Village, CO 80111 303.221.2330 (Phone) 303.221.2331 (Fax) andrew@stolfusandassociates.com
RAISING THE GRADE OF US 160 AND AN UNDERPASS FOE THE CONNECTION. COMMERCE DRIVE COULD BE

Thank you for your participation
Eliminated as anintetesection w/160. Fthidk WORT A LOOK. AB

COMMENT SHEET
BAYFIELD US 160 ACCESS PLAN
PUBLIC OPEN HOUSE - AUGUST 14, 2014
Name: \qquad MElanic Mazw Representing: Pine Rive Times
\qquad Box 830 City: \qquad Baptized State: \qquad Co
Address: 8112 Phone:884-2331 Email: \qquad
Zip Code: \qquad
\qquad prtopinerivestimes. com
Do you want to be added to the mailing list? Yes \qquad
Are you a (check all that apply):
\square Property Owner along US 160
[Business Owner/Lessee along US 160
\square Bayfield Resident in project area

No \qquad

La Plata County Resident in project area

- Member of the General Public

史 Other media Elite

What elements of the access plan do you support?
\qquad
\qquad
\qquad
\qquad
What elements of the access plan do you dislike?

\qquad
Do you have any concerns about how the access plan will be implemented?
\qquad
\qquad
\qquad
Other comments:
\qquad
\qquad
\qquad
\qquad
Please leave this with us, mail, or email by August 27, 2014 to:
Andrew Amend, P.E. Stolfus \& Associates, Inc.
5690 DTC Boulevard, Suite 101W, Greenwood Village, CO 80111 303.221.2330 (Phone) 303.221.2331 (Fax)

From:	Andrew Amend
Sent:	Monday, September 15, 2014 3:29 PM
To:	'Carole McWilliams'
Cc:	Elizabeth Stolfus; mike.mcvaugh@state.co.us; Jim Horn (james.b.horn@state.co.us); Jim
	Davis; Heinlein -CDOT, Jo; 'Chris Lamay'
Subject:	RE: Bayfield Hwy 160 access control plan

Dear Ms. McWilliams,

On behalf of the project team, including Town of Bayfield, La Plata County, and CDOT, I would like to thank you for participating in the access planning process and providing written comments. We are currently evaluating your comments along with comments provided by others to improve the draft access plan presented this summer. The project team expects to present an updated plan in October.

We encourage you to attend future planning events and to continue to offer any feedback you may have.
Sincerely,
Andrew

Andrew Amend, PE | Transportation Engineer www.stolfusandassociates.com Stolfus \& Associates, Inc. | 5690 DTC Boulevard, Suite 101W | Greenwood Village, CO 80111
P: 3032212330 | andrew@stolfusandassociates.com
-----Original Message-----
From: Carole McWilliams [mailto:news@pinerivertimes.com]
Sent: Wednesday, August 27, 2014 10:16 AM
To: Andrew Amend
Subject: Bayfield Hwy 160 access control plan
Here are my comments re. the Bayfield Highway 160 Access Control Plan.

Bayfield and CDOT have had an adversarial relationship for almost 20 years. CDOT's stranglehold on highway access has thwarted economic development in Bayfield, resulting in a large share of locals clogging Highway 160 to commute to jobs in Durango. In October 1999, the Transportation Commission imposed the expressway designation over the town's very strong objections. I was one of the people who travelled to Denver for that meeting. The expressway designation, as described in the access code, did not match conditions on the ground, but that didn't seem to matter. Funny thing, all the protests of designations at that meeting were from Region 5, all saying pretty much the same thing. No matter.

The message to Bayfield has always been that CDOT cares more about through travelers than Colorado residents, the local needs and desires. Locals using the highway are seen as an inconvenience to the through travelers. Refer back to Bayfielders commuting to Durango because of lack of economic development here.

I have developed an extremely cynical and dis-trustful attitude about CDOT since the late 1990s, and as a result, I have what some might consider obsessive documentation of what has transpired. I hope the current access control plan represents a change in how CDOT deals with Bayfield. The powerpoint presentation to town trustees in July said
project goals include safe and efficient local access along with effective through travel; and compatibility with a local vision, including a plan consistent with local intersection priorities, that supports the economic viability of the area. Those would indeed be a change in how CDOT relates to Bayfield.

My fundamental thought is that an access control plan wouldn't be needed if we could get rid of the expressway designation and get the designation Bayfield asked for in 1998. Absent that, I support the town plans to keep the west end Bayfield Parkway intersection where it is, with some reconfiguration and access on the north side of the highway. I support the new north side access at the east edge of Bayfield, opening that area for residential and commercial development, and creating an alternative for traffic now accessing the highway from Commerce Drive. My understanding is that the town and local developers would pay the costs of those east and west end intersection improvements. I stress that Commerce Drive has been and will continue to be an essential link between the north and south halves of town. It is vital for our businesses, such as they are.

Thank you for your consideration of these comments.
Carole McWilliams
PO Box 693, Bayfield CO 81122

COMMENT SHEET
BAYFIELD US 160 ACCESS PLAN PUBLIC OPEN HOUSE - AUGUST 14, 2014

Name: \qquad Representing: \qquad Nl

Address: \qquad City:BAYFIECA State: \qquad Zip Code: \qquad Phone: 9708844521 Email: ROTH HOG HEAVEN N@ SKy WERX.COM Do you want to be added to the mailing list? Yes \qquad K \qquad No

Are you a (check all that apply):
\mathbb{Z} Property Owner along US 160
\square Business Owner/Lessee along US 160
\square Bayfield Resident in project area
\square La Plata County Resident in project area
\square Member of the General Public
\square Other

What elements of the access plan do you support?
CLOSURE ACCESSES ACNE THE ROUTE AND $3 / 4$ TINS

* LETS LOWER THE HLEHAY THRU GEM YILCANE NOW, AND GAIN SOME TURN LANES
What elements of the access plan do you dislike?
WHERE TIE ACCESS IS TO BE FOR GEM VILLAGE.
II SHOULD AND NESS TO BE DIRECTLY SOUTH OE
THE COUNTY ROAD
* LETS LOWER THE HIGHWAY THRU GEM VILLAGE NOW

Do you have any concerns about how the access plan will be implemented?
NOPE
\qquad
\qquad

Other comments:
TELL THE EASTERN SLOPE TO LO TO PURGATORY
AND SEND US MORE MONEY

* les lower the Hibeluay tiRe GEm villate now AND GAN SOME TURN LANES

Please leave this with us, mail, or email by August 27, 2014 to:
Andrew Amend, P.E. Stolfus \& Associates, Inc.
5690 DTC Boulevard, Suite 101W, Greenwood Village, CO 80111
303.221.2330 (Phone) 303.221.2331 (Fax)
andrew@stolfusandassociates.com

Thank you for your participation

COMMENT SHEET

BAYFIELD US 160 ACCESS PLAN GEM VILLAGE PUBLIC OPEN HOUSES - SEPTEMBER 2014
Name: Candace Dial \& Crystal RosRepresenting: Village Junction Antiq vies Address: 39793 us tho 160 city: Bacitreld state: Co Zip Code: 81122 Phone:970-88y-244 Email: village, unctionaritiques@yahoo.com
Do you want to be added to the mailing list? Yes x No__
\qquad
\qquad Are you a (check all that apply):

Property Owner along US 160
Business Owner/Lessee along US 160
Gem Village Resident in project area
\square La Plata County Resident in project area

- Member of the General Public
\square Other

What elements of the access plan do you support?

What elements of the access plan do you dislike?

Do you have any concerns about how the access plan will be implemented?

Other comments:
\qquad
\qquad
\qquad

Please leave this with us, mail, or email by September 30, 2014 to:
Andrew Amend, P.E. Stolfus \& Associates, Inc.
5690 DTC Boulevard, Suite 101W, Greenwood Village, CO 80111
303.221.2330 (Phone) 303.221.2331 (Fax)

Michael D. McVaugh andrew@stolfusandassociates.com

October 14, 2014
Candace Dial and Crystal Ross
Village Junction Antiques
39793 US Hwy 160
Bayfield, CO 81122

RE: Bayfield - US 160 Access Plan in Gem Village

Dear Ms. Dial and Ms. Ross,
On behalf of the project team: the Town of Bayfield, La Plata County, and CDOT, I would like to thank you for providing written comments regarding the Bayfield - US 160 Access Plan. We are currently evaluating your comments along with those provided by others to improve the draft access plan. The project team expects to present an updated plan in December.

We appreciate your concerns regarding the future of US 160 through Gem Village. The proposed alignment of US 160 shown in our plan reflects the US 160 Record of Decision (ROD) alignment of the highway in this area. This alignment was evaluated and selected through an Environmental Impact Statement process that began in 1996 and concluded in 2006. That process included public input, safety evaluations, resource impact studies, as well as other technical evaluations. Currently, the improvements to US 160 at Gem Village are unfunded and do not have a planned date for implementation.

The US 160 Access Plan is limited, by Colorado Statute, to the regulation of accesses only. The Plan therefore uses the US 160 ROD alignment as a basis for evaluating access to and from the highway without consideration of alternative highway alignments. The findings of the US 160 Access Plan evaluations will specify where each access will be located and what types of vehicular movements will be allowed at each access point.

In response to your comment regarding signage for travelers, we have included a pamphlet with information regarding CDOT's Tourist Oriented Directional Sign program. This program provides business identification and directional information along state highways for tourist oriented activities.

Thank you again for your participation in the US 160 Access Plan. We encourage you to attend future planning events and to continue to offer any feedback you may have.

Very Truly Yours,

STOLFUS \& ASSOCIATES, INC.

Andrew Amend, P.E.
Transportation Engineer

COMMENT SHEET

BAYFIELD US 160 ACCESS PLAN

GEM VILLAGE PUBLLC OPEN HGUSES -September 2014

Address: \qquad Cit \qquad State: \qquad
\qquad Zip Code: $8 / / 22$ Phone: $884-4375$ Email: Do you want to be added to the mailing list? Yes \qquad $1 / \mathbf{N}^{2}$ No \qquad
Are you a (check all that apply):
\downarrow Property owner along US160
Business Owneressee along US160
___Gem Village Resident in project area
__ La Plata County Resident in project area Member if the General Public

What elements of the access plan do you support?

Do you have any concerns about how the access plan will be implemented?

Please leave this with us, mail, or email by September 30, 2014 to:
Andrew Amend, P.E. Stolfus \& Associates, Inc.
5690 DTC Boulevard, Suite 101W, Greenword Village, CO 80111 303.221.2300 (Phone) 303.221.2331 (Fax)
andrew@stolfusandassociates.com

- COMMENT SHEET

BAYFIELD US 160 ACCESS PLAN

GEM VILLAGE PUBLIC OPEN HOUSES - September 2014

Name: Brian + Dawn Schultz Representing: Homestead Trails Address: 1398 Homestead Dr citr:Bayfield state: CD zip code: 81122 phone:970.884-5298 mail:brianschultz 4444@gmail.com Do you want to be added to the mailing list? Yes \qquad No \qquad Are you a (check all that apply):
\qquad Property owner along US160
__Business Owneressee along US160
$X_{\text {Gem }}$ Village Resident in project area

La Plata County Resident in project area
Member if the General Public
___Other

What elements of the access plan do you support?

None
\qquad

What elements of the access plan do you
dislike? The highway pajeet is going tor un way too close to our house. Too mach highway nose It will decrease the value of ours home. Too many lights from cars directing in to our home. We have children tory ob ont their safety with the Do you have any concerns about how the access plan will be implemented? highway that close.

We were never notified of anymeetingst are very concerned
$=$
Department of Transportation Region 5 Main Avenue, Suite 100 Durango, Colorado 81301 385-8361 (970) 385-8360, FAX (970) mike.mevaugh state.co.us

[^0]This will wreck our quite neighboshord. We didn't bul our home with the intention. of staring at a noises higervay in front of

Please leave this with us, mail, or email by September 30, 2014 to: Andrew Amend, P.E. Stolfus \& Associates, Inc. 5690 DTC Boulevard, Suite 101W, Greenword Village, CO 80111
303.221.2300 (Phone) 303.221.2331 (Fax)
andrew@stolfusandassociates.com

November 19, 2014
Jo Heinlein
Colorado Department of Transportation
3803 N. Main Avenue, Suite 100
Durango, CO 81301
Dear Jo:
Thank you for your recent visit to Bayfield to discuss the long-range plans for Highway 160 through Bayfield. As we discussed, the District currently owns two pieces of property that may be impacted by any changes to Highway 160 through Bayfield corridor.

42456 Highway 160, Bayfield

The District leases this building as a source of income that directly benefits student extracurricular activities. Given the significance of this funding, the District supports maintaining access from Highway 160.

TBD Oak Drive, Bayfield (Parcel \#5677-013-00-016)

This vacant property was purchased by the District in December 2012 to be used as a future school site. We anticipate building on this property within the next three to five years, due to growth in our lower grade levels. Given its proximity to our property, we would like to participate in future discussions surrounding the installation of a traffic light at the intersection of Highway 160 and Bayfield Parkway.

On behalf of the Bayfield School District, I request the addition of this letter to any public comments related to the long-range plans for the Highway 160 corridor through Bayfield. Please do not hesitate to contact me directly if you would like further detail.

Sincerely,

Troy Zabel
Superintendent

February 4, 2015
Troy Zabel
Bayfield School District 10 Jt-R
24 Clover Drive
Bayfield, CO 81122

RE: Bayfield - US 160 Access Plan in Gem Village

Dear Mr. Zabel,
On behalf of the project team: the Town of Bayfield, La Plata County, and CDOT, I would like to thank you for your letter addressed to Jo Heinlein of CDOT regarding the Bayfield - US 160 Access Plan. We are currently evaluating your comments along with those provided by others to improve the plan. The project team expects to present the final plan to Town and County Boards in March for adoption.

The Access Plan identifies where and how highway access will occur in the future. Control of access provides benefits to highway operation and safety, while also taking into account local development and transportation planning. The Access Plan addresses each of the District properties you mentioned in your letter as follows:

42456 Highway 160, Bayfield

Closure of this property's highway access will not occur unless the use of the lot is expanded or enlarged. If the use is expanded or enlarged, the property would retain access to the local street system at E. Pony Lane only. Additionally, highway improvements may require restrictions of access at an earlier date. While it is recognized that the school property provides an alternate source of income for the District; without future restriction of the access, the Commerce Drive intersection with US 160 may not be able to function safely and efficiently.

TBD Oak Drive, Bayfield (Parcel \#5677-013-00-016)

District planning for this property was considered in the development of the the Access Plan, which calls for future north-side access to US 160 across from Bayfield Parkway at the east end of town. The Access Plan allows all movements and for a future traffic signal at this location. Public street connections to the highway access point will be established by Town and/or County planning efforts separate from this Access Plan. Signalization of the highway intersection will be implemented as warranted according to the Manual on Uniform Traffic Control Devices.

Thank you again for your participation in the US 160 Access Plan. We encourage you to continue to offer any feedback you may have.

Very Truly Yours,

STOLFUS \& ASSOCIATES, INC.

Andrew Amend, P.E.
Transportation Engineer

Bayfield US 160 Access Plan
Public Open House - December 4, 2014 Bayfield, CO

Bayfield US 160 Access Plan
Public Open House - December 4, 2014 Bayfield, CO

COMMENT SHEET

BAYFIELD US 160 ACCESS PLAN PUBLIC OPEN HOUSE - December 4, 2014

Name: \qquad Representing: BUS OWNEIR Address: 360 MOUNTAiN VIEW PO BOX 1402 City: BAY FIELD State: CO Zip Code: OL122 Phone: $970-7695334$ Email: DHRYL YOST AHOTMAIL . COM
Do you want to be added to the mailing list? Yes \qquad No \qquad
Are you a (check all that apply):
8. Property Owner along US 160
$\square \quad$ La Plata County Resident in project area

- Business Owner/Lessee along US 160
\square Member of the General Public
\square Bayfield Resident in project area
\square Other

What elements of the access plan do you support?
\qquad
\qquad
\qquad
\qquad
What elements of the access plan do you dislike?
\qquad
\qquad
\qquad
\qquad
Do you have any concerns about how the access plan will be implemented?
THAT NO CHANgES BE MADE QT COMMARCE DR
UNTIL A NEW EAST SIDE CONNECTION IS MADE
WITH EASMENTS AND ICES TO COMMARCE

Other comments:

\square
502 COULD HAVE RT TURN ONLY HEADING WEST US A GATE

Please leave this with us, mail, or email by December 18, 2014 to:
Andrew Amend, P.E. Stolfus \& Associates, Inc.
5690 DTC Boulevard, Suite 101W, Greenwood Village, CO 80111 303.221.2330 (Phone) 303.221.2331 (Fax) andrew@stolfusandassociates.com

BAYFIELD US 160 ACCESS PLAN PUBLIC OPEN HOUSE - December 4, 2014

Name: \qquad Representing: Mini Mere $\frac{\text { Sower Properties }}{\text { Self }}$ Address: PO BOX 1503

\qquad City: Boupield state: C) Zip Code: 8112λ Phone: 884 - 9904 E Do you want to be added to the mailing list? Yes
 No \qquad
Are you a (check all that apply):
(1. Property Owner along US 160
(D. Business Owner/Lessee along US 160
(4. Bayfield Resident in project area
\square La Plata County Resident in project area (1) Member of the General Public
\square Other

What elements of the access plan do you support?
\qquad
\qquad
\qquad

What elements of the access plan do you dislike?

Do you have any concerns about how the access plan will be implemented?

Please leave this with us, mail, or email by December 18, 2014 to:
Andrew Amend, P.E. Stolfus \& Associates, Inc.
5690 DTC Boulevard, Suite 101W, Greenwood Village, CO 80111
303.221.2330 (Phone) 303.221.2331 (Fax) andrew@stolfusandassociates.com
name: Marsha A. MORELAND. Representing: SELF (Homeowner) Address: \qquad city:BAYFIECD state: (C) Zip code: 81122 phone: 970-749-2682mail: marsha@ gobrainsform.nef Do you want to be added to the mailing list? Yes \qquad No \qquad
Are you a (check all that apply):
\square Property Owner along US 160
\square Business Owner/Lessee along US 160
\square Bayfield Resident in project area
\& La Plata County Resident in project area
\square Member of the General Public
\square Other

What elements of the access plan do you support?

Whatelements of the access plan do you dislike? Homestead tribes atculde-sac obherebu propestees
foil be deletedfsm. on s subdivision plat do
fees on our inchestrucur. Lots being bought out Do you have any concerns about how the access plan will be implemented? or deleted. bust on H Foneowrew in this scononus. Remove other comments: lot next (EASt) of Cul-de-saco ont cohere.

> please leave this with us, mail, or email by December 18, 2014 to. Andrew Amend, P.E. Stolfus \& Associates, Inc.
> 5690 DTC Boulevard, Suite 101W, Greenwood Village, CO 80111 303.221 .2330 (Phone) 303.221 .2331 (Fax) andrew@stolfusandassociates.com

COMMENT SHEET
BAYFIELD US 160 ACCESS PLAN
PUBLIC OPEN HOUSE - December 4, 2014
Name: Mike Russell Representing: Homestead
Address: 934 Main Ave. Unit C
\qquad City: \qquad Durango State: \qquad Co

Zip Code: 81301 _Phone: 970 - 385 - 4546 Email: \qquad
Do you want to be added to the mailing list? Yes \qquad No \qquad
Are you a (check all that apply):
\square Property Owner along US 160
\square La Plata County Resident in project area
\square Business Owner/Lessee along US 160Member of the General Public
\square Bayfield Resident in project area
Other Consultant For Homestead
What elements of the access plan do you support?
Revised Gem Village by-puss with Keeping the US 160-W est Bayfield parkway intersection in the same "general" location. Consolidation of accesses into a new rightin-right out on the stretch just east of Gem Village
What elements of the access plan do you dislike?
The location of the proposed south ley of the US $160 / \mathrm{was}$ - Buy field Parkway intersection bisects the existing Homestead Parcel in a manner that creates two small undevelopuble parcels. Shifting the alignment rust would help preserve this parcel for economic development
Do you have any concerns about how the access plan will be implemented?
The sooner the better!
When the Germ Village intersection is developed a connection to the Itomestend Subdiviguld be installed as well to ensure connectivity.

Other comments:
Please move forward with updating the EIS ASAP and begin working on funding the construction of the Gem Village bypass.

Please leave this with us, mail, or email by December 18, 2014 to:
Andrew Amend, P.E. Stolfus \& Associates, Inc.
5690 DTC Boulevard, Suite 101W, Greenwood Village, CO 80111 303.221 .2330 (Phone) 303.221.2331 (Fax)
andrew@stolfusandassociates.com

COMMENT SHEET
BAYFIELD US 160 ACCESS PLAN
PUBLIC OPEN HOUSE - December 4, 2014
Name: \qquad Grant 1315 mountain View Dr
Address: \qquad
\qquad 799-1747 Phone: 81122
\qquad
list? Yes \qquad
Are you a (cheek all that apply):
Property Owner along US 160
. Business Owner/Lessee along US 160

- Bayfield Resident in project area

No \qquad

La Plata County Resident in project area

- Member of the General PublicOther

What elements of the access plan do you support?
$A L L$
\qquad
\qquad
\qquad
What elements of the access plan do you dislike?
The South leg of The us 160 , Bay Field Punk aa. intersection bisects a Homestead at Bayfield LLC Parcel rendering both remaining Parcels useless. Moving This intersection East would be a Do you have any concerns about how the access plan will be implemented? BeN CF; I an Concerned when this plan would be implemented. IT would Greatly improve safety If Done soon. I am Concerned about Noise
Other comments:
Hopefully you will update The E-1S and work on funding for the Gem Village by Pass.

Please leave this with us, mail, or email by December 18, 2014 to:
Andrew Amend, P.E. Stolfus \& Associates, Inc.
5690 DTC Boulevard, Suite 101W, Greenwood Village, CO 80111 303.221.2330 (Phone) 303.221.2331 (Fax)
andrew@stolfusandassociates.com

January 29, 2015
Mike Russell, P.E.
Russell Planning \& Engineering
934 Main Avenue, Unit C
Durango, CO 81301
Cc: Grant Richards

RE: Bayfield - US 160 Access Plan in Gem Village

Dear Mr. Russell,
On behalf of the project team, I would like to thank you for providing written comments regarding the Bayfield - US 160 Access Plan. We are currently evaluating your comments along with those provided by others to improve the plan. The project team expects to present the final plan to Town and County Boards in February for adoption.

We appreciate your concerns regarding the proposed realignments of Bayfield Parkway and Homestead Drive. The alignments are based on recommendations made in the Town of Bayfield - Traffic Feasibility Study, which was completed in May 2014. The US 160 Access Plan uses recommendations from the Traffic Feasibility Study to specify where and how highway access may occur, but does not specify off-highway improvements.

The concept recommended in the Traffic Feasibility Study was based on projected future traffic demands, physical constraints, roadway design standards, and stakeholder input. A primary concern of the project team was ensuring sufficient distance between the proposed Bayfield Parkway/Homestead Drive intersection and US 160 so that a traffic signal on the highway could be accommodated in the future. In the absence of specific development proposals and field survey information, recommendations from the Traffic Feasibility Study represent potential solutions that will require further engineering study prior to implementation. Design of these roadway improvements will likely be influenced by better defined development plans for the area and by more detailed information regarding physical constraints. No timetable for these improvements has been established, but local stakeholders including Homestead Trails will be involved when design moves forward.

Thank you again for your participation in the US 160 Access Plan. We encourage you to continue to offer any feedback you may have.

Very Truly Yours,
STOLFUS \& ASSOCIATES, INC.

Andrew Amend, P.E.
Transportation Engineer

COMMENT SHEET
 BAYFIELD US 160 ACCESS PLAN PUBLIC OPEN HOUSE - December 4, 2014

Name: Maryttlice Copeland Representing: Self (x neighluen) Address: Bql2DOU.S.ltwy 160 (Gam Village) City: Bayfeild State: CO Zip Code 81122 Phone:884-2419 Email: Do you want to be added to the mailing list? Yes \qquad maryacope@q.com Are you a (check all that apply):

护 Property Owner along US 160
\square Business Owner/Lessee along US 160 Bayfield Resident in project area No \qquad

10 La Plata County Resident in project area

- Member of the General Public
\square Other

What elements of the access plan do you support?
Nothsice W access should he Riv, Rout for safety-
\qquad

What elements of the access plan do you dislike?
Concern: West access to Hoy an Side in Bro Village -

 Do you have any concerns about how the access plan will be implemented?
 To bock e apo eng distance almegfintage hoad. Whir W+S acceded is often used ley emergency quelivichos when hong. is blocked t traffic nedoti be mowed dither Eve Wo-
Som which s turn ow R at thin $S * W$ access to allow hovithroufe traffic t encicuce move enviotely ir tonchove pull off it a hang

 Please leave this with us, mail, or email by December 18, 2014 to: Andrew Amend, P.E. Stolfus \& Associates, Inc.
5690 DTC Boulevard, Suite 101W, Greenwood Village, CO 80111 303.221 .2330 (Phone) 303.221 .2331 (Fax) andrew@stolfusandassociates.com

January 29, 2015
Mary Alice Copeland
39640 U.S. Highway 160
Bayfield, CO 81122

RE: Bayfield - US 160 Access Plan in Gem Village

Dear Ms. Copeland,
On behalf of the project team: the Town of Bayfield, La Plata County, and CDOT, I would like to thank you for providing written comments regarding the Bayfield - US 160 Access Plan. We are currently evaluating your comments along with those provided by others to improve the access plan. The project team expects to present the final plan to Town and County Boards in February for adoption.

We appreciate your concerns regarding the south-side frontage road access point to US 160 at the west end of Gem Village. The project team agrees that the mobility of large vehicles on the frontage road must be supported while also achieving the Access Plan goal of increasing intersection safety. The plan will be updated to reflect a Right-In, Right-Out access at this location until an adequate large vehicle turnaround can be provided. Conversion of the access point from full-movement to Right-In, Right-Out may occur as part of highway safety improvement project or when development in the vicinity increases traffic at the access by more than 20%.

Thank you again for your participation in the US 160 Access Plan. We encourage you to continue to offer any feedback you may have.

Very Truly Yours,

STOLFUS \& ASSOCIATES, INC.

Anhaw Anead
Andrew Amend, P.E.
Transportation Engineer

Appendix B - Existing Access Inventory

Access ID No.	Reference Point (Windshield)	Owner/Description	Current Business	Existing Configuration		Type	Notes
	100.01	MP 100					
1	100.30	Gem Lane		Unsignalized Full Movement	LT	PRU	Access to Frontage Road
2	100.38	US 160 Frontage Road (South)		Unsignalized Full Movement	RT	PRU	Access to Frontage Road
3	100.56	CO RD 507		Unsignalized Full Movement	LT	PRU	Access to Frontage Road
4	100.56	US 160 Frontage Road (South)		Unsignalized Full Movement	RT	PRU	Access to Frontage Road
5	100.80	US 160 Frontage Road (South)		Unsignalized Full Movement	RT	PRU	Access to Frontage Road
6	100.80	US 160 Frontage Road (North)		Unsignalized Full Movement	LT	PRU	Access to Frontage Road
7	100.90	Homestead Trails Property Owners Association		Unsignalized Full Movement	RT	FA	GATED
8	100.90	Smith, Calvin L \& Cecelia E Trustees		Unsignalized Full Movement	LT	FA	GATED
9	100.94	Smith, Calvin L \& Cecelia E Trustees		Unsignalized Full Movement	LT	RA	Perkins, James B \& Gwen B Cross Access
	100.99	MP 101					
10	101.03	Homestead Trails Property Owners Association		Unsignalized Full Movement	RT	FA	GATED
11	101.03	Perkins, James B \& Gwen B		Unsignalized Full Movement	LT	FA	GATED
12	101.08	Homestead at Bayfield LLC, The		Unsignalized Full Movement	RT	PRU	Access to Lift Station
		Homestead at Bayfield LLC, The		Unsignalized Full Movement	RT	FA	No direct highway access
		Homestead at Bayfield LLC, The		Unsignalized Full Movement	RT	FA	No direct highway access
		Homestead at Bayfield LLC, The		Unsignalized Full Movement	RT	FA	No direct highway access
13	101.09	Beaver, Phyllis A		Unsignalized Full Movement	LT	RA	
14	101.37	Tucker, Don		Unsignalized Full Movement	RT	RA	GATED
15	101.42	Bayfield Parkway (West)		Unsignalized Full Movement	RT	PRU	
16	101.42	Peeples, Peyton Paul \& Dianne M		Unsignalized Full Movement	LT	RA	GATED
17	101.50	Casper, Charles C \& Shirley A		Unsignalized Full Movement	LT	FA	GATED
18	101.59	Casper, Charles C \& Shirley A		Unsignalized Full Movement	LT	RA	
19	101.83	Grush, Kevin R \& Terry S \& Trout, Carol		Unsignalized Full Movement	RT	FA	

Legend
PRS - Public Road Signalized
PRU - Public Road Unsignalized
PVRU - Private Road Unsignalized
BA - Business Access
RA - Residential Access
FA - Field Access

Access ID No.	Reference Point (Windshield)	Owner/Description	Current Business	Existing Configuration		Type	Notes
20	101.83	Sivers, Robert R		Unsignalized Full Movement	LT	FA	
	101.98	MP 102					
21	102.00	CO RD 506		Unsignalized Full Movement	LT	PRU	
22	102.24	CO RD 502		Unsignalized Full Movement	LT	PRU	
23	102.27	Grush, Kevin R \& Terry S \& Trout, Carol		Unsignalized Full Movement	RT	FA	Ditch Access
24	102.27	Bursey, Lynne T Trustee \& Goodloe, Helen		Unsignalized Full Movement	LT	FA	Ditch Access
25	102.37	Bayfield, Town of	Bayfield Visitor Center/Pine River Park	Unsignalized Full Movement	RT	BA	Gated
26	102.48	Bayfield, Town of		Unsignalized Full Movement	RT	BA	Gated Recreational Access
27	102.48	Riverside RV LLC	Bayfield Riverside Riverside RV Park	Unsignalized Full Movement	LT	BA	Ag/Res Property Neighbor
28	102.81	Buck Highway		Signalized Full Movement	RT	PRS	
29	102.81	CO RD 501		Signalized Full Movement	LT	PRS	
30	102.87	Elliott, Denise		Unsignalized Full Movement	RT	FA	
	102.90	MP 103					
31	103.10	N. Commerce Dr		Unsignalized Full Movement	LT	PRU	
32	103.10	Bayfield School District		Unsignalized Full Movement	RT	BA	
33	103.30	Peeples Real Estate Investments LLLP		Unsignalized Full Movement	LT	RA	
34	103.30	Haga, Jerry D \& Zelma		Unsignalized Full Movement	RT	FA	GATED
35	103.45	Southwestern Foods Inc		Unsignalized Full Movement	LT	RA	Lee W Properties LLC Cross Access
36	103.53	Bayfield Parkway (East)		Unsignalized Full Movement	RT	PRU	
38	103.81	Yarina, David P \& Brenda A		Unsignalized Full Movement	RT	FA	GATED
39	103.82	Byrd, Oscar \& Nancy Trustees		Unsignalized Full Movement	LT	PVRU	RA / AG Access

Legend
PRS - Public Road Signalized
PRU - Public Road Unsignalized
PVRU - Private Road Unsignalized
BA - Business Access
RA - Residential Access
FA - Field Access

Appendix C - Traffic Methodology, Data Analysis

Memorandum

To: \quad Mike McVaugh, PE
Chris La May Jim Davis, PE
cc: Elizabeth Stolfus, PE Jo Heinlein
From: Andrew Amend, PE
Date: September 26, 2013
Re: US 160 Bayfield Traffic Feasibility Analysis - Draft Methodology

Abstract

This memorandum describes the general traffic engineering and transportation planning approach proposed by Stolfus \& Associates, Inc. for the US 160 Traffic Feasibility Analysis near Bayfield, Colorado. The purpose of this memorandum is to outline, for the benefit of the Town, County and CDOT, the primary assumptions and procedures that will be used in developing future traffic projections. All traffic analyses conducted in the feasibility analysis will be in accordance with this methodology and be used to support access-related decisions made during the course of the project.

STUDY AREA

The study limits cover US 160 through and adjacent to the Town of Bayfield in La Plata County. The US 160 analysis limits will generally extend from Gem Lane (MP 100.468) to Bayfield Parkway (MP 103.624). This section of US 160 functions as a Principal Arterial per FHWA guidelines and falls within the E-X: Expressway access category. The study area will primarily compare the highway and access configuration shown in the preferred alternative from the May 2006 US 160 Final EIS to any new access configurations proposed by the project team.

EXISTING TRAFFIC VOLUMES

Daily traffic counts were collected on Wednesday, August 14th and Thursday, August $15^{\text {th }}, 2013$. The two counts were located on US 160, west of CR 507 and east of Bayfield Parkway. Average Daily Traffic (ADT) at those locations was found to be 11,800 and 5,900 , respectively. It is also noted there was 10% more traffic on August $14^{\text {th }}$ than August $15^{\text {th }}$ at both count locations. At the western count location, morning and afternoon peak hour traffic was 8.2% and 8.6% of daily traffic, respectively.

August $15^{\text {th }}$ and $16^{\text {th }}, 2012$ count data from the CDOT Automatic Traffic Recorder (ATR) 000217 located east of Homestead Drive shows ADT of 11,200. Daily traffic data collected on Tuesday, June 5 ${ }^{\text {th }}, 2012$ east of Bayfield Parkway shows ADT of 5,700 at that location. Based on these CDOT sources, data collected in 2013 is thought to be consistent with the typical traffic patterns in area and representative of peak season traffic volumes. CDOT data indicates truck percentages of 4.8% and 9.6% at the Homestead Drive and Bayfield Parkway locations, respectively.

ATR data from July 31, 2013 indicated peaks in traffic demand during the two hour periods beginning at 7:00 a.m. and 4:00 p.m. Turning Movement Counts (TMCs) were then collected during those times on August $13^{\text {th }}$ and $15^{\text {th }}, 2013$ at seven locations along US 160. System peaks in traffic were determined by adding total intersection volumes of all counted intersections. The system peak hours began at 7:15 a.m. and 5:00 p.m. TMC data from these peak hours is shown in the attached exhibit.

BACKGROUND TRAFFIC PROJECTIONS

In the EIS, future traffic demands were estimated by growing traffic 1.79% per year. Consistent with this growth rate assumption, the current CDOT estimate of 20-year growth at ATR 000217 is a factor of 1.43, which equates to 1.80% compounded annually. A straight line analysis of historical data from the ATR shows August ADT increasing from 7,700 in 1992 to 10,600 in 2012. This equates to an annual compound growth rate of 1.60%.

In order to maintain consistency with the EIS and current CDOT growth estimates, an annual compound growth rate of 1.80% will be applied to 2013 traffic volumes to predict future highway traffic volumes. At this rate, 2025 p.m. peak hour traffic demands at the US 160/CR 501 intersection are estimated to be approximately 11% lower than projected in the EIS. However, this traffic feasibility analysis will consider a 20 year horizon for growth projections. 2033 traffic demands at the intersection are forecasted to be 3% greater than the 2025 demands from the EIS.

Tube counts have also been collected on county roads in the study area. This data indicates varying growth patterns along the various roads. Using counts between 1991 and 2012, growth on CR 502 was 1.45% compounded annually. This growth rate will be applied to existing traffic on all county roads in the study area.

PLANNED DEVELOPMENT

Planned development accounted for in this study considered properties near US 160 with development potential. Generally, those properties were consistent with those considered in the US 160/160B (West Side) Transportation Study prepared by Drexel, Barrell \& Co. in 2011. This study is not intended to define the future land use of specific properties so only a rough estimate of development intensity will be made. Roughly consistent with the 2011 Transportation Study, 380 acres will be considered for development.

Areas adjacent to US 160 will be assumed to be developed as retail and areas farther from the highway will be assumed to be single family homes. The following summarizes the traffic generating impacts of these assumptions from the ITE Trip Generation, $9^{\text {th }}$ Edition based on average rates for Single-Family Detached Housing and Shopping Center:

- 35,600 Daily Trips Generated
- 1,130 trips generated during the morning peak hour
- 3,200 trips generated during the afternoon peak hour

Development trips will be reduced to account for internal trips and pass-by trips where applicable. The distribution of development generated trips along US 160 will match that in the attached trip distribution figure.

TRAFFIC MODELS

Traffic models of access configurations will primarily consist of assessing trip reassignment as a result of access change. The FHWA Cap-X tool for the planning of junctions will then be used to evaluate the capacity of highway access points. Two scenarios will be evaluated for each proposed configuration:

- Year 2035 without implementation of any US 160 EIS improvements (No-EIS scenario)
- Year 2035 with full implementation of US 160 EIS improvements (EIS scenario)

The No-EIS scenario will consider how a new access will function assuming that no other changes are made along the corridor beyond those upon which the new access is contingent. The EIS scenario will evaluate the new access and how it interacts with all improvements proposed in the US 160 EIS. Evaluation of an interim or phased scenario will only be considered at the request of the project team. Peak hour traffic signal warrants described in the Manual on Uniform Traffic Control Devices (MUTCD) will be used as a planning level tool to determine if full movement intersections may be signalized in future scenarios.

The Cap-X tool separates junction types into intersections, roundabouts, and interchanges. Numerous configurations of these junction types can evaluated at a planning level with results presented as volume-to-capacity ratio (v/c) for the junction. Right-of-Way constraints and State Highway Access Code auxiliary lane requirements will be considered along with turn demand when selecting lane configurations at the junctions. The results of these analyses and comparisons, in combination with physical and other constraints, will assist the project team in making access-related decisions.

TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	160A / Gem Ln
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/10/2014	Analysis Year	August 2013
Analysis Time Period	AM		
Project Description 13021			
East/West Street: Highway 160A		North/South Street: Gem	
Intersection Orientation: East-West		Study Period (hrs): 1.00	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	0	249			555	5
Peak-Hour Factor, PHF	0.90	0.90	1.00	1.00	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	276	0	0	616	5
Percent Heavy Vehicles	2	--	--	0	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LT					TR
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				10	0	5
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.90	0.90	0.90
$\begin{array}{l}\text { Hourly Flow Rate, HFR } \\ \text { (veh/h) }\end{array}$	0	0	0	11	0	5
Percent Heavy Vehicles	0	0	0	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	1	0
Configuration					LTR	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LT						LTR	
v (veh/h)	0						16	
C (m) (veh/h)	960						352	
v/c	0.00						0.05	
95\% queue length	0.00						0.14	
Control Delay (s/veh)	8.8						15.7	
LOS	A						C	
Approach Delay (s/veh)	--	--					15.7	
Approach LOS	--	--					C	

TWO-WAY STOP CONTROL SUMMARY			
General Information	Site Information		
Analyst	Max Rusch	Intersection	160A / County Rd 507
Agency/Co.	Surisdiction	La Plata County	
Analysis Year	August 2013		
Date Performed			
Analysis Time Period	AM		
Project Description $130 / 2014$			
East/West Street: Highway	160A		
Intersection Orientation: East-West	North/South Street:	County Rd 507	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	3	251	5	8	553	5
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	3	278	5	8	614	5
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LTR			LTR		
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	2	1	2	5	0	5
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	2	1	2	5	0	5
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration		LTR			LTR	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LTR	LTR		LTR			LTR	
v (veh/h)	3	8		5			10	
C (m) (veh/h)	961	1279		344			329	
v/c	0.00	0.01		0.01			0.03	
95\% queue length	0.01	0.02		0.04			0.09	
Control Delay (s/veh)	8.8	7.8		15.6			16.3	
LOS	A	A		C			C	
Approach Delay (s/veh)	--	--		15.6			16.3	
Approach LOS	--	--		C			C	

TWO-WAY STOP CONTROL SUMMARY			
General Information	Site Information		
Analyst	Max Rusch	Intersection	$160 \mathrm{~A} /$ Homestead Drive
Agency/Co.	Stolfus and Associates	Larisdiction	La Plata County
Analysis Year	August 2013		
Date Performed	$12 / 10 / 2014$		
Analysis Time Period	AM		
Project Description 13021			
East/West Street: Highway 160A	North/South Street:	Homestead Drive	
Intersection Orientation: East-West	Study Period (hrs): 1.00		

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	1	256	0	6	574	31
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	1	284	0	6	637	34
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LTR			LTR		
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	0	0	0	6	0	3
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
$\begin{array}{l}\text { Hourly Flow Rate, HFR } \\ \text { (veh/h) }\end{array}$	0	0	0	6	0	3
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration		LTR			LTR	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LTR	LTR		LTR			LTR	
v (veh/h)	1	6		0			9	
C (m) (veh/h)	919	1278					284	
v/c	0.00	0.00					0.03	
95\% queue length	0.00	0.01					0.10	
Control Delay (s/veh)	8.9	7.8					18.1	
LOS	A	A					C	
Approach Delay (s/veh)	--	--					18.1	
Approach LOS	--	--					C	

TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	160A / Bayfield Parkway West
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/10/2014	Analysis Year	August 2013
Analysis Time Period	AM		
Project Description 13021			
East/West Street: Highway 160A		North/South Street:	Parkway
Intersection Orientation	t-West	Study Period (hrs):	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		217	48	4	530	
Peak-Hour Factor, PHF	0.96	0.90	0.90	0.90	0.90	0.96
Hourly Flow Rate, HFR (veh/h)	0	241	53	4	588	0
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			1			0
Lanes	0	1	1	0	1	0
Configuration		T	R	LT		
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	78	0	9			
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.96	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	86	0	10	0	0	0
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	1	1	0	0	0
Configuration	LT		R			

Delay, Queue Length, and Level of Service								
Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		$L T$	LT		R			
v (veh/h)		4	86		10			
$\mathrm{C}(\mathrm{m})(\mathrm{veh} / \mathrm{h})$		1326	336		798			
v/c		0.00	0.26		0.01			
95\% queue length		0.01	1.02		0.04			
Control Delay (s/veh)		7.7	19.4		9.6			
LOS		A	C		A			
Approach Delay (s/veh)	--	--	18.4					
Approach LOS	--	--	C					

TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst		Intersection	160A / County Rd 506
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/10/2014	Analysis Year	August 2013
Analysis Time Period	AM		
Project Description 13021			
East/West Street: Highway 160A		North/South Street:	Rd 506
Intersection Orientation: East-West		Study Period (hrs):	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	2	223			517	1
Peak-Hour Factor, PHF	0.90	0.90	1.00	1.00	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	2	247	0	0	574	1
Percent Heavy Vehicles	2	--	--	0	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	2	0
Configuration	LT				T	TR
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				4	0	9
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.90	0.90	0.90
$\begin{array}{l}\text { Hourly Flow Rate, HFR } \\ \text { (veh/h) }\end{array}$	0	0	0	4	0	10
Percent Heavy Vehicles	0	0	0	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	1	0
Configuration					LTR	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	$L T$						LTR	
v (veh/h)	2						14	
C (m) (veh/h)	994						533	
v/c	0.00						0.03	
95\% queue length	0.01						0.08	
Control Delay (s/veh)	8.6						11.9	
LOS	A						B	
Approach Delay (s/veh)	--	--					11.9	
Approach LOS	--	--					B	

TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	160A / County Rd 502
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/10/2014	Analysis Year	August 2013
Analysis Time Period	AM		
Project Description 13021			
East/West Street: Highway 160A		North/South Street: County Rd 502	
Intersection Orientation: East-West		Study Period (hrs): 1.00	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	15	212			496	5
Peak-Hour Factor, PHF	0.90	0.90	1.00	1.00	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	16	235	0	0	551	5
Percent Heavy Vehicles	2	--	--	0	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LT					TR
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				15	0	30
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.90	0.90	0.90
$\begin{array}{l}\text { Hourly Flow Rate, HFR } \\ \text { (veh/h) }\end{array}$	0	0	0	16	0	33
Percent Heavy Vehicles	0	0	0	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	1	0
Configuration					LTR	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LT						LTR	
v (veh/h)	16						49	
C (m) (veh/h)	1015						449	
v/c	0.02						0.11	
95\% queue length	0.05						0.37	
Control Delay (s/veh)	8.6						14.0	
LOS	A						B	
Approach Delay (s/veh)	--	--					14.0	
Approach LOS	--	--					B	

Capacity Analysis for Planning of Junctions

Input Worksheet

Project Name:	US 50-Bayfield Traffic Feasibility PM Peak	Critical Lane Volume Sum Project Number: $\quad 13021$		Acceptable Configurations	
Location	Bayfield, CO	<1200	$1200-1399$	$1400-1599$	≥ 1600
Date	December 19, 2013	0	0	0	0

Results for Intersections														
	TYPE OF INTERSECTION	Sheet	Zone 1 (North)		Zone 2 (South)		Zone 3 (East)		Zone 4 (West)		Zone 5 (Center)		Overall v/c Ratio	Ranking
			CLV	V/C										
1	Conventional	FULL									463	0.29	0.29	10
2	Conventional Shared RT LN	CSRL	,		-					\square	503	0.31	0.31	13
3.1	Quadrant Roadway	S-W			475	0.30		,	291	0.18	371	0.23	0.30	11
3.2		N-E	382	0.24			312	0.20			308	0.19	0.24	7
3.3		S-E	7	7	351	0.22	351	0.22		7	263	0.16	0.22	5
3.4		N-W	230	0.14					312	0.20	348	0.22	0.22	4
4.1	Partial Displaced Left Turn	N-S	249	0.16	175	0.11		7		7	322	0.20	0.20	3
4.2		E-W	7	\square		7	236	0.15	176	0.11	321	0.20	0.20	2
5	Displaced Left Turn	FULL	249	0.16	175	0.11	236	0.15	176	0.11	248	0.15	0.16	1
6.1	Restricted Crossing U-Turn	N -S	368	0.23	257	0.16	526	0.33	559	0.35			0.35	15
6.2		E-W	359	0.22	351	0.22	361	0.23	379	0.24		1	0.24	6
7.1	Median U-Turn	N-S	235	0.15	268	0.17				7	494	0.31	0.31	12
7.2		E-W				7	256	0.16	424	0.26	513	0.32	0.32	14
8.1	Partial Median U-Turn	N-S	185	0.12	326	0.20					456	0.29	0.29	8
8.2		E-W	\square			7	230	0.14	250	0.16	456	0.29	0.29	8

Capacity Analysis for Planning of Junctions

Input Worksheet

Results for Roundabouts															
\#	$\begin{gathered} \text { TYPE OF } \\ \text { ROUNDABOU } \\ \text { T } \end{gathered}$	Zone 1 (North)			Zone 3 (East)			Zone 2 (South)			Zone 4 (West)			Overall v/c Ratio	Ranking
		Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3		
9.1	1×1	0.40			0.30			0.37	-		0.37			0.40	5
9.2	1×2	0.36	-		0.13	0.17		0.33			0.23	0.14		0.36	4
9.3	$\underline{2 \times 1}$	0.22	0.19		0.27			0.10	0.26		0.35	-		0.35	3
9.4	$\underline{2 \times 2}$	0.20	0.17		0.12	0.16		0.10	0.24		0.22	0.13		0.24	2
9.5	3×3	0.09	0.12	0.15	0.03	0.09	0.14	0.01	0.09	0.21	0.05	0.17	0.13	0.21	1

Results for Interchanges

\#	TYPE OF INTERCHANGE	Sheet	Zone 1 (Rt Mrg)		Zone 2 (Lt Mrg)		Zone 3 (Ctr. 1)		Zone 4 (Ctr. 2)		Zone 5 (Lt Mrg)		Zone 6 (Rt Mrg)		Overall v/c Ratio	Ranking
			CLV	V/C												
10.1	Diamond	N-S					319	0.20	286	0.18					0.20	8
10.2		E-W					254	0.16	203	0.13			,		0.16	5
11.1	Partial Cloverleaf	N-S			-		90	0.06	197	0.12			,	,	0.12	2
11.2		E-W					192	0.24	160	0.10					0.12	1
13.1	Displaced Left Turn	N-S	234	0.15	,		246	0.15	128	0.08			168	0.11	0.15	4
13.2		E-W	249	0.16			274	0.17	153	0.10			292	0.18	0.18	6
14.1	Double Crossover Diamond	N-S	97	0.06	207	0.13	190	0.12	158	0.10	124	0.08	168	0.11	0.13	3
14.2		E-W	263	0.16	212	0.13	230	0.14	190	0.12	298	0.19	311	0.19	0.19	7
15.1	Single Point	N-S	187	0.12			396	0.25					260	0.16	0.25	10
15.2		E-W	263	0.16			369	0.23					267	0.17	0.23	9

TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	160A / North Commerce
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/10/2014	Analysis Year	August 2013
Analysis Time Period		Analysis Year	August 2013
Project Description 13021			
East/West Street: Highway 160A		North/South Street: North Commerce Drive	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	99	143	0	0	184	42
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	110	158	0	0	204	46
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	1	1	0	0	1	1
Configuration	L		TR	LT		R
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	0	1	0	38	0	131
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	1	0	42	0	145
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	1	1	0	0	1	1
Configuration	L		TR	$L T$		R

Delay, Queue Length, and Level of Service								
Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	LT	L		TR	LT		R
v (veh/h)	110	0	0		1	42		145
C (m) (veh/h)	1316	1422	283		367	396		837
v/c	0.08	0.00	0.00		0.00	0.11		0.17
95\% queue length	0.27	0.00	0.00		0.01	0.36		0.63
Control Delay (s/veh)	8.0	7.5	17.7		14.8	15.2		10.2
LOS	A	A	C		B	C		B
Approach Delay (s/veh)	--	--		4.8			1.3	
Approach LOS	--	--		B			B	

TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	160A / Bayfield Parkway
Agency/Co.	Stolfus and Associates	Jurisdiction	Last Plata County
Date Performed	12/10/2014	Analysis Year	August 2013
Analysis Time Period	AM	Analysis Year	August 20
Project Description 13021			
East/West Street: Highway 160A		North/South Stre	Parkway East
Intersection Orientation	st-West	Study Period (hrs)	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	0	135	41	21	158	0
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
$\begin{aligned} & \text { Hourly Flow Rate, HFR } \\ & \text { (veh/h) } \end{aligned}$	0	150	45	23	175	0
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LTR			LTR		
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	72		10	0		0
Peak-Hour Factor, PHF	0.90	0.96	0.90	0.90	0.96	0.90
Hourly Flow Rate, HFR (veh/h)	80	0	11	0	0	0
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			1			0
Lanes	1	0	1	0	0	0
Configuration	L		R		$L R$	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	$L T R$	$L T R$	L		R		$L R$	
v (veh/h)	0	23	80		11		0	
C (m) (veh/h)	1401	1378	558		872			
v/c	0.00	0.02	0.14		0.01			
95% queue length	0.00	0.05	0.50		0.04			
Control Delay (s/veh)	7.6	7.7	12.5		9.2			
LOS	A	A	B		A			
Approach Delay (s/veh)	--	--	12.1					
Approach LOS	--	--						

TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	160A / Gem Ln
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/10/2014	Analysis Year	August 2013
Analysis Time Period	PM		
Project Description 13021			
East/West Street: Highway 160A		North/South Street: Gem	
Intersection Orientation: East-West		Study Period (hrs): 1.00	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	5	637			337	10
Peak-Hour Factor, PHF	0.96	0.96	1.00	1.00	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	5	663	0	0	351	10
Percent Heavy Vehicles	2	--	--	0	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LT					TR
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				5	0	0
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.96	0.96	0.96
```l}\begin{array}{l}{\mathrm{ Hourly Flow Rate, HFR}}\\{\mathrm{ (veh/h)}}```	0	0	0	5	0	0
Percent Heavy Vehicles	0	0	0	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	1	0
Configuration					LTR	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LT						LTR	
v (veh/h)	5						5	
C (m) (veh/h)	1198						258	
v/c	0.00						0.02	
95\% queue length	0.01						0.06	
Control Delay (s/veh)	8.0						19.2	
LOS	A						C	
Approach Delay (s/veh)	--	--					19.2	
Approach LOS	--	--					C	



Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	0	642	5	6	338	4
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	0	668	5	6	352	4
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LTR			LTR		
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	7	0	9	15	2	2
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	7	0	9	15	2	2
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration		LTR			LTR	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LTR	LTR		LTR			LTR	
v (veh/h)	0	6		16			19	
C (m) (veh/h)	1203	918		298			222	
v/c	0.00	0.01		0.05			0.09	
95\% queue length	0.00	0.02		0.17			0.28	
Control Delay (s/veh)	8.0	8.9		17.8			22.7	
LOS	A	A		C			C	
Approach Delay (s/veh)	--	--		17.8			22.7	
Approach LOS	--	--		C			C	


TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	160A / Homestead Drive
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/10/2014	Analysis Year	August 2013
Analysis Time Period	PM		
Project Description 13021			
East/West Street: Highway 160A		North/South Street: Homestead Drive	
Intersection Orientation: East-West		Study Period (hrs): 1.00	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	1	670	0	2	337	7
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	1	697	0	2	351	7
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LTR			LTR		
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	0	0	17	17	0	0
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
$\begin{array}{l}\text { Hourly Flow Rate, HFR } \\ \text { (veh/h) }\end{array}$	0	0	17	17	0	0
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration		LTR			LTR	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LTR	LTR		LTR			LTR	
v (veh/h)	1	2		17			17	
C (m) (veh/h)	1201	899		441			192	
v/c	0.00	0.00		0.04			0.09	
95\% queue length	0.00	0.01		0.12			0.29	
Control Delay (s/veh)	8.0	9.0		13.5			25.6	
LOS	A	A		B			D	
Approach Delay (s/veh)	--	--		13.5			25.6	
Approach LOS	--	--		B			D	


TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/10/2014	Analysis Year	August 2013
Analysis Time Period	PM		
Project Description 13021			
East/West Street: Highway 160A		North/South Street: Bayfield Parkway West	
Intersection Orientation: East-West		Study Period (hrs): 1.00	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		541	162	296	9	
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	0	563	168	308	9	0
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			1			0
Lanes	0	1	1	0	1	0
Configuration		T	$R$	$L T$		
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	52	0	9			
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
$\begin{array}{l}\text { Hourly Flow Rate, HFR } \\ \text { (veh/h) }\end{array}$	54	0	9	0	0	0
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	1	1	0	0	0
Configuration	LT		$R$			

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		LT	LT		$R$			
v (veh/h)		308	54		9			
C (m) (veh/h)		1008	144		526			
v/c		0.31	0.38		0.02			
95\% queue length		1.32	1.73		0.05			
Control Delay (s/veh)		10.1	44.8		12.0			
LOS		B	$E$		B			
Approach Delay (s/veh)	--	--	40.1					
Approach LOS	--	--	E					


TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	160A / County Rd 506
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/10/2014	Analysis Year	August 2013
Analysis Time Period	PM		
Project Description 13021			
East/West Street: Highway 160A		North/South Street: County Rd 506	
Intersection Orientation: East-West		Study Period (hrs): 1.00	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	8	546			303	4
Peak-Hour Factor, PHF	0.96	0.96	1.00	1.00	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	8	568	0	0	315	4
Percent Heavy Vehicles	2	--	--	0	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	2	0
Configuration	LT				T	TR
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				3	0	2
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.96	0.96	0.96
$\begin{array}{l}\text { Hourly Flow Rate, HFR } \\ \text { (veh/h) }\end{array}$	0	0	0	3	0	2
Percent Heavy Vehicles	0	0	0	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	1	0
Configuration					LTR	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LT						LTR	
v (veh/h)	8						5	
C (m) (veh/h)	1238						381	
v/c	0.01						0.01	
95\% queue length	0.02						0.04	
Control Delay (s/veh)	7.9						14.6	
LOS	A						B	
Approach Delay (s/veh)	--	--					14.6	
Approach LOS	--	--					$B$	


TWO-WAY STOP CONTROL SUMMARY			
General Information	Site Information		
Analyst	Max Rusch	Intersection	$160 \mathrm{~A} /$ County 502
Agency/Co.	Stolfus and Associates	Larisdiction	La Plata County
Analysis Year	August 2013		
Date Performed	12/10/2014		
Analysis Time Period	PM		
Project Description 13021			
East/West Street: Highway 160A	North/South Street:	County 502	
Intersection Orientation: East-West	Study Period (hrs): 1.00		

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	30	519			290	10
Peak-Hour Factor, PHF	0.96	0.96	1.00	1.00	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	31	540	0	0	302	10
Percent Heavy Vehicles	2	--	--	0	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LT					TR
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				5	0	15
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.96	0.96	0.96
$\begin{array}{l}\text { Hourly Flow Rate, HFR } \\ \text { (veh/h) }\end{array}$	0	0	0	5	0	15
Percent Heavy Vehicles	0	0	0	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	1	0
Configuration					LTR	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LT						LTR	
v (veh/h)	31						20	
C (m) (veh/h)	1248						536	
v/c	0.02						0.04	
95\% queue length	0.08						0.12	
Control Delay (s/veh)	8.0						12.0	
LOS	A						B	
Approach Delay (s/veh)	--	--					12.0	
Approach LOS	--	--					$B$	

## Capacity Analysis for Planning of Junctions

Input Worksheet

Project Name:	US 50-Bayfield Traffic Feasibility PM Peak	Critical Lane Volume Sum    Project Number: $\quad 13021$		Acceptable Configurations	
Location	Bayfield, CO	$<1200$	$1200-1399$	$1400-1599$	$\geq 1600$
Date	December 19, 2013	0	0	0	0


Results for Intersections														
	TYPE OF INTERSECTION	Sheet	Zone 1 (North)		Zone 2 (South)		Zone 3 (East)		Zone 4 (West)		Zone 5 (Center)		Overall v/c Ratio	Ranking
			CLV	V/C										
1	Conventional	FULL			,			-			488	0.31	0.31	10
2	Conventional Shared RT LN	CSRL	,					,		$\square$	587	0.37	0.37	14
3.1	Quadrant Roadway	S-W		,	460	0.29		,	428	0.27	418	0.26	0.29	5
3.2		N-E	476	0.30			320	0.20		$\square$	437	0.27	0.30	7
3.3		S-E			273	0.17	273	0.17		$7$	437	0.27	0.27	4
3.4		N-W	241	0.15			-	$7$	325	0.20	321	0.20	0.20	1
4.1	Partial Displaced Left Turn	N-S	296	0.18		0.19		7		$7$	464	0.29	0.29	6
4.2		E-W	$7$			$7$	328	0.20	261	0.16	333	0.21	0.21	3
5	Displaced Left Turn	FULL	296	0.18	300	0.19	328	0.20	261	0.16	328	0.21	0.21	2
6.1	Restricted Crossing U-Turn	N-S	417	0.26	391	0.24	674	0.42	798	0.50		$7$	0.50	15
6.2		E-W	559	0.35	459	0.29	349	0.22	569	0.36		$7$	0.36	13
7.1	Median U-Turn	N-S	287	0.18	226	0.14				$7$	509	0.32	0.32	11
7.2		E-W			$7$	$7$	369	0.23	523	0.33	555	0.35	0.35	12
8.1	Partial Median U-Turn	N-S	213	0.13	176	0.11				$7$	485	0.30	0.30	8
8.2		E-W	-		$\square$	$7$	357	0.22	448	0.28	485	0.30	0.30	8

## Capacity Analysis for Planning of Junctions

Input Worksheet

Results for Roundabouts															
\#	TYPE OFROUNDABOUT	Zone 1 (North)			Zone 3 (East)			Zone 2 (South)			Zone 4 (West)			Overall v/c Ratio	Ranking
		Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3		
9.1	$1 \times 1$	0.51			0.72			0.30			0.42			0.72	5
9.2	$1 \times 2$	0.45			0.38	0.34		0.26			0.28	0.15		0.45	3
9.3	$\underline{2 \times 1}$	0.18	0.33		0.65			0.11	0.19		0.39			0.65	4
9.4	$\underline{2 \times 2}$	0.17	0.29		0.35	0.31		0.09	0.16	,	0.26	0.13		0.35	2
9.5	$3 \times 3$	0.04	0.14	0.26	0.09	0.28	0.29	0.01	0.10	0.16	0.07	0.19	0.13	0.29	1

Results for Interchanges

\#	TYPE OF INTERCHANGE	Sheet	Zone 1 (Rt Mrg)		Zone 2 (LI Mrg)		Zone 3 (Ctr. 1)		Zone 4 (Ctr. 2)		Zone 5 (Lt Mrg)		Zone 6 (Rt Mrg)		Overall v/c Ratio	Ranking
			CLV	V/C												
10.1	Diamond	N-S		,			405	0.25	474	0.30					0.30	9
10.2		E-W					254	0.16	252	0.16			,		0.16	2
11.1	Partial Cloverleaf	N-S		,	,		86	0.05	108	0.07			,	-	0.07	1
11.2		E-W					384	0.30	263	0.16					0.24	8
13.1	Displaced Left Turn	N-S	195	0.12			261	0.16	288	0.18			262	0.16	0.18	4
13.2		E-W	297	0.19			225	0.14	203	0.13			328	0.20	0.20	6
14.1	Double Crossover Diamond	N-S	149	0.09	249	0.16	245	0.15	215	0.13	214	0.13	262	0.16	0.16	3
14.2		E-W	319	0.20	346	0.22	295	0.18	184	0.12	366	0.23	271	0.17	0.23	7
15.1	Single Point	N-S	283	0.18			554	0.35					423	0.26	0.35	10
15.2		E-W	319	0.20			320	0.20					207	0.13	0.20	5


TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	160A / North Commerce
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/10/2014	Analysis Year	August 2013
Analysis Time Period	PM	Analysis Year	August 2013
Project Description 13021			
East/West Street: Highway 160A		North/South Stre	mmerce Drive
Intersection Orientation	st-West	Study Period (hrs):	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	216	224	1	0	215	65
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	225	233	1	0	223	67
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	1	1	0	0	1	1
Configuration	L		TR	LT		$R$
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	4	0	0	70	1	116
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	4	0	0	72	1	120
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	1	1	0	0	1	1
Configuration	L		TR	LT		$R$


Delay, Queue Length, and Level of Service								
Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	LT	L		TR	$L T$		$R$
v (veh/h)	225	0	4		0	73		120
C (m) (veh/h)	1272	1333	163			222		817
v/c	0.18	0.00	0.02			0.33		0.15
95\% queue length	0.64	0.00	0.08			1.44		0.52
Control Delay (s/veh)	8.4	7.7	27.6			29.1		10.2
LOS	A	A	D			D		B
Approach Delay (s/veh)	--	--					17.3	
Approach LOS	--	--					C	


TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	160A / Bayfield Parkway East
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/10/2014	Analysis Year	August 2013
Analysis Time Period	PM		
Project Description 13021			
East/West Street: Highway 160A		North/South Street:	Parkway East
Intersection Orientation	t-West	Study Period (hrs):	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	0	200	102	12	195	0
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
$\begin{aligned} & \text { Hourly Flow Rate, HFR } \\ & \text { (veh/h) } \end{aligned}$	0	208	106	12	203	0
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LTR			LTR		
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	81		33	0		0
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	84	0	34	0	0	0
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			1			0
Lanes	1	0	1	0	0	0
Configuration	L		$R$		$L R$	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LTR	LTR	L		$R$		LR	
v (veh/h)	0	12	84		34		0	
C (m) (veh/h)	1369	1246	486		778			
v/c	0.00	0.01	0.17		0.04			
95\% queue length	0.00	0.03	0.62		0.14			
Control Delay (s/veh)	7.6	7.9	14.0		9.8			
LOS	A	A	B		A			
Approach Delay (s/veh)	--	--	12.8					
Approach LOS	--	--	B					


TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	160A / Gem Ln
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/10/2014	Analysis Year	2035
Analysis Time Period	AM		
Project Description 13021			
East/West Street: Highway 160A		North/South Street: Gem	
Intersection Orientation: East-West		Study Period (hrs): 1.00	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	0	370			823	7
Peak-Hour Factor, PHF	0.90	0.90	1.00	1.00	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	411	0	0	914	7
Percent Heavy Vehicles	2	--	--	0	--	--
Median Type	Raised curb					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LT					TR
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				14	0	7
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.90	0.90	0.90
```l}\begin{array}{l}{\mathrm{ Hourly Flow Rate, HFR}}\\{\mathrm{ (veh/h)}}```	0	0	0	15	0	7
Percent Heavy Vehicles	0	0	0	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	1	0
Configuration					LTR	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LT						LTR	
v (veh/h)	0						22	
C (m) (veh/h)	741						304	
v/c	0.00						0.07	
95\% queue length	0.00						0.23	
Control Delay (s/veh)	9.9						17.8	
LOS	A						C	
Approach Delay (s/veh)	--	--					17.8	
Approach LOS	--	--					C	

TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst		Intersection	160A / County Rd 507
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/10/2014	Analysis Year	2035
Analysis Time Period	AM		
Project Description 13021			
East/West Street: Highway 160A		North/South Street:	Rd 507
Intersection Orientation: East-West		Study Period (hrs):	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	4	373	7	11	821	7
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	4	414	7	12	912	7
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LTR			LTR		
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	3	1	3	7	0	7
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	3	1	3	7	0	7
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration		LTR			LTR	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LTR	LTR		LTR			LTR	
v (veh/h)	4	12		7			14	
C (m) (veh/h)	743	1138		189			176	
v/c	0.01	0.01		0.04			0.08	
95\% queue length	0.02	0.03		0.12			0.26	
Control Delay (s/veh)	9.9	8.2		24.8			27.2	
LOS	A	A		C			D	
Approach Delay (s/veh)	--	--		24.8			27.2	
Approach LOS	--	--		C			D	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	1	380	0	8	854	43
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	1	422	0	8	948	47
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LTR			LTR		
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	0	0	0	8	0	4
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
$\begin{array}{l}\text { Hourly Flow Rate, HFR } \\ \text { (veh/h) }\end{array}$	0	0	0	8	0	4
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration		LTR			LTR	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LTR	LTR		LTR			LTR	
v (veh/h)	1	8		0			12	
C (m) (veh/h)	695	1137					144	
v/c	0.00	0.01					0.08	
95\% queue length	0.00	0.02					0.27	
Control Delay (s/veh)	10.2	8.2					32.3	
LOS	B	A					D	
Approach Delay (s/veh)	--	--					32.3	
Approach LOS	--	--					D	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	0	327	66	5	794	0
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	363	73	5	882	0
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			1			0
Lanes	0	1	1	0	1	0
Configuration	LT		R	LTR		
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	107	0	10			
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.96	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	118	0	11	0	0	0
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	2	0	0	0	0
Configuration	LT		TR			

Delay, Queue Length, and Level of Service								
Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	$L T$	LTR	LT		TR			
v (veh/h)	0	5	118		11			
C (m) (veh/h)	767	1196	188		682			
v/c	0.00	0.00	0.63		0.02			
95\% queue length	0.00	0.01	4.48		0.05			
Control Delay (s/veh)	9.7	8.0	55.0		10.4			
LOS	A	A	F		B			
Approach Delay (s/veh)	--	--		51.2				
Approach LOS	--	--		F				

TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	160A / County Rd 506
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/10/2014	Analysis Year	2035
Analysis Time Period	AM		
Project Description 13021			
East/West Street: Highway 160A		North/South Street: County Rd 506	
Intersection Orientation: East-West		Study Period (hrs): 1.00	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	3	331			776	1
Peak-Hour Factor, PHF	0.90	0.90	1.00	1.00	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	3	367	0	0	862	1
Percent Heavy Vehicles	2	--	--	0	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	2	0
Configuration	LT				T	TR
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				5	0	12
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.90	0.90	0.90
$\begin{array}{l}\text { Hourly Flow Rate, HFR } \\ \text { (veh/h) }\end{array}$	0	0	0	5	0	13
Percent Heavy Vehicles	0	0	0	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	1	0
Configuration					LTR	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LT						LTR	
v (veh/h)	3						18	
C (m) (veh/h)	775						355	
v/c	0.00						0.05	
95\% queue length	0.01						0.16	
Control Delay (s/veh)	9.7						15.7	
LOS	A						C	
Approach Delay (s/veh)	--	--					15.7	
Approach LOS	--	--					C	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	21	317			738	7
Peak-Hour Factor, PHF	0.90	0.90	1.00	1.00	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	23	352	0	0	820	7
Percent Heavy Vehicles	2	--	--	0	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LT					TR
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				41	0	0
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.90	0.90	0.90
$\begin{array}{l}\text { Hourly Flow Rate, HFR } \\ \text { (veh/h) }\end{array}$	0	0	0	45	0	0
Percent Heavy Vehicles	0	0	0	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	1	0
Configuration					LTR	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LT						LTR	
v (veh/h)	23						45	
C (m) (veh/h)	804						192	
v/c	0.03						0.23	
95\% queue length	0.09						0.91	
Control Delay (s/veh)	9.6						29.5	
LOS	A						D	
Approach Delay (s/veh)	--	--					29.5	
Approach LOS	--	--					D	

Capacity Analysis for Planning of Junctions

Input Worksheet

Project Name:	US 50-Bayfield Traffic Feasibility PM Peak	Critical Lane Volume Sum Project Number: $\quad 13021$		Acceptable Configurations	
Location	Bayfield, CO	<1200	$1200-1399$	$1400-1599$	≥ 1600
Date	December 19, 2013	0	0	0	0

Results for Intersections														
	TYPE OF INTERSECTION	Sheet	Zone 1 (North)		Zone 2 (South)		Zone 3 (East)		Zone 4 (West)		Zone 5 (Center)		Overall v/c Ratio	Ranking
			CLV	V/C										
1	Conventional	FULL			-						639	$\underline{0.40}$	0.40	10
2	Conventional Shared RT LN	CSRL	,					,		\square	684	0.43	0.43	12
3.1	Quadrant Roadway	S-W			650	0.41		,	398	0.25	504	0.31	0.41	11
3.2		N-E	523	0.33			453	0.28		\square	384	0.24	0.33	6
3.3		S-E	1		483	0.30	483	0.30		7	411	0.26	0.30	5
3.4		N-W	318	0.20				7	362	0.23	472	0.30	0.30	4
4.1	Partial Displaced Left Turn	N-S	341	0.21	242	0.15		,		7	442	0.28	0.28	3
4.2		E-W	7		7	7	346	0.22	87	0.05	423	0.26	0.26	2
5	Displaced Left Turn	FULL	341	0.21	242	0.15	346	0.22	87	0.05	322	0.20	0.22	1
6.1	Restricted Crossing U-Turn	N-S	312	0.20	379	0.24	695	0.43	426	0.27			0.43	13
6.2		E-W	492	0.31	481	0.30	429	0.27	541	0.34		1	0.34	7
7.1	Median U-Turn	N-S	324	0.20	367	0.23				7	859	0.54	0.54	15
7.2		E-W				7	287	0.18	604	0.38	709	0.44	0.44	14
8.1	Partial Median U-Turn	N-S	256	0.16	447	0.28				7	626	0.39	0.39	8
8.2		E-W	-		\square	7	249	0.16	365	0.23	626	0.39	0.39	8

Capacity Analysis for Planning of Junctions

Input Worksheet

Results for Roundabouts															
\#	$\begin{gathered} \text { TYPE OF } \\ \text { ROUNDABOU } \\ \text { T } \end{gathered}$	Zone 1 (North)			Zone 3 (East)			Zone 2 (South)			Zone 4 (West)			Overall v/c Ratio	Ranking
		Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3		
9.1	1×1	0.46			0.52			0.59	-		0.40			0.59	5
9.2	1×2	0.44			0.23	0.29		0.51			0.17	0.23		0.51	4
9.3	$\underline{2 \times 1}$	0.25	0.21		0.46			0.17	0.42		0.36	-		0.46	3
9.4	$\underline{2 \times 2}$	0.24	0.20		0.20	0.26		0.15	0.37		0.16	0.21		0.37	2
9.5	3×3	0.10	0.14	0.18	0.04	0.17	0.23	0.02	0.14	0.32	0.08	0.08	0.18	0.32	1

Results for Interchanges

\#	TYPE OF INTERCHANGE	Sheet	Zone 1 (Rt Mrg)		Zone 2 (Lt Mrg)		Zone 3 (Ctr. 1)		Zone 4 (Ctr. 2)		Zone 5 (Lt Mrg)		Zone 6 (Rt Mrg)		Overall v/c Ratio	Ranking
			CLV	V/C												
10.1	Diamond	N-S		,			440	0.28	393	0.25					0.28	8
10.2		E-W					264	0.17	183	0.11			,		0.17	1
11.1	Partial Cloverleaf	N-S		-	,		125	0.08	270	0.17			,	,	0.17	2
11.2		E-W		-	,		278	0.33	116	0.07					0.17	3
13.1	Displaced Left Turn	N-S	321	0.20			339	0.21	176	0.11			231	0.14	0.21	5
13.2		E-W	187	0.12			306	0.19	232	0.15			422	0.26	0.26	7
14.1	Double Crossover Diamond	N-S	321	0.20	285	0.18	260	0.16	217	0.14	170	0.11	231	0.14	0.20	4
14.2		E-W	207	0.13	158	0.10	338	0.21	107	0.07	276	0.17	448	0.28	0.28	9
15.1	Single Point	N-S	465	0.29			635	0.40					358	0.22	0.40	10
15.2		E-W	207	0.13			416	0.26					381	0.24	0.26	6

TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	160A / North Commerce
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/10/2014	Analysis Year	La Plata Count
Analysis Time Period			
Project Description 13021			
East/West Street: Highway 160A		North/South Street: North Commerce Drive	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	136	227	0	0	291	58
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	151	252	0	0	323	64
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	1	1	0	0	1	1
Configuration	L		TR	LT		R
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	0	1	0	52	0	180
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	1	0	57	0	200
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	1	1	0	0	1	1
Configuration	L		TR	LT		R

Delay, Queue Length, and Level of Service								
Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	LT	L		TR	LT		R
v (veh/h)	151	0	0		1	57		200
C (m) (veh/h)	1171	1313	142		229	242		718
v/c	0.13	0.00	0.00		0.00	0.24		0.28
95\% queue length	0.44	0.00	0.00		0.01	0.92		1.15
Control Delay (s/veh)	8.5	7.7	30.4		20.8	24.4		11.9
LOS	A	A	D		C	C		B
Approach Delay (s/veh)	--	--	20.8			14.7		
Approach LOS	--	--	C			B		

TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	160A / Bayfield Parkway
Agency/Co.	Stolfus and Associates	Jurisdiction	Last La Plata County
Date Performed	12/10/2014	Analysis Year	2035
Analysis Time Period	AM	Analysis Year	
Project Description 13021			
East/West Street: Highway 160A		North/South Stre	Parkway East
Intersection Orientation: East-West		Study Period (hrs)	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	0	205	56	29	244	0
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
$\begin{aligned} & \text { Hourly Flow Rate, HFR } \\ & \text { (veh/h) } \end{aligned}$	0	227	62	32	271	0
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LTR			LTR		
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	99		14	0		0
Peak-Hour Factor, PHF	0.90	0.96	0.90	0.90	0.96	0.90
Hourly Flow Rate, HFR (veh/h)	110	0	15	0	0	0
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			1			0
Lanes	1	0	1	0	0	0
Configuration	L		R		$L R$	

Delay, Queue Length, and Level of Service								
Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LTR	LTR	L		R		LR	
v (veh/h)	0	32	110		15		0	
C (m) (veh/h)	1292	1273	407		781			
v/c	0.00	0.03	0.27		0.02			
95\% queue length	0.00	0.08	1.10		0.06			
Control Delay (s/veh)	7.8	7.9	17.1		9.7			
LOS	A	A	C		A			
Approach Delay (s/veh)	--	--	16.2					
Approach LOS	--	--	C					

TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	160A / Gem Ln
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/10/2014	Analysis Year	2035
Analysis Time Period	PM		
Project Description 13021			
East/West Street: Highway 160A		North/South Street: Gem	
Intersection Orientation: East-West		Study Period (hrs): 1.00	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	7	937			500	14
Peak-Hour Factor, PHF	0.96	0.96	1.00	1.00	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	7	976	0	0	520	14
Percent Heavy Vehicles	2	--	--	0	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LT					TR
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				7	0	0
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.96	0.96	0.96
```l}\begin{array}{l}{\mathrm{ Hourly Flow Rate, HFR}}\\{\mathrm{ (veh/h)}}```	0	0	0	7	0	0
Percent Heavy Vehicles	0	0	0	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	1	0
Configuration					LTR	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LT						LTR	
v (veh/h)	7						7	
C (m) (veh/h)	1034						130	
v/c	0.01						0.05	
95\% queue length	0.02						0.17	
Control Delay (s/veh)	8.5						34.3	
LOS	A						D	
Approach Delay (s/veh)	--	--					34.3	
Approach LOS	--	--					D	



Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	0	954	7	8	503	5
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	0	993	7	8	523	5
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LTR			LTR		
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	10	0	12	21	3	3
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.90
$\begin{array}{l}\text { Hourly Flow Rate, HFR } \\ \text { (veh/h) }\end{array}$	10	0	12	21	3	3
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration		LTR			LTR	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LTR	LTR		LTR			LTR	
v (veh/h)	0	8		22			27	
C (m) (veh/h)	1039	692		145			101	
v/c	0.00	0.01		0.15			0.27	
95\% queue length	0.00	0.04		0.53			1.06	
Control Delay (s/veh)	8.5	10.3		34.3			53.5	
LOS	A	B		D			$F$	
Approach Delay (s/veh)	--	--		34.3			53.5	
Approach LOS	--	--		D			$F$	



Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	1	996	0	3	500	10
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	1	1037	0	3	520	10
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LTR			LTR		
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	0	0	23	23	0	0
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
$\begin{array}{l}\text { Hourly Flow Rate, HFR } \\ \text { (veh/h) }\end{array}$	0	0	23	23	0	0
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration		LTR			LTR	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LTR	LTR		LTR			LTR	
v (veh/h)	1	3		23			23	
C (m) (veh/h)	1037	670		281			80	
v/c	0.00	0.00		0.08			0.29	
95\% queue length	0.00	0.01		0.27			1.16	
Control Delay (s/veh)	8.5	10.4		19.0			67.9	
LOS	A	B		C			F	
Approach Delay (s/veh)	--	--		19.0			67.9	
Approach LOS	--	--		C			$F$	



Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	0	821	222	296	9	0
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
$\begin{array}{l}\text { Hourly Flow Rate, HFR } \\ \text { (veh/h) }\end{array}$	0	855	231	308	9	0
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			1			0
Lanes	0	1	1	0	1	0
Configuration	LT		$R$	LTR		
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	52	0	9			
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
$\begin{array}{l}\text { Hourly Flow Rate, HFR } \\ \text { (veh/h) }\end{array}$	54	0	9	0	0	0
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	2	0	0	0	0
Configuration	LT		TR			


Delay, Queue Length, and Level of Service								
Approach	Eastbound	Westbound	Northbound		Southbound			
Movement	1	4	7	8	9	10	11	12
Lane Configuration	$L T$	$L T R$	$L T$		$T R$			
v (veh/h)	0	308	54		9			
C (m) (veh/h)	1611	785	84		358			
v/c	0.00	0.39	0.64		0.03			
$95 \%$ queue length	0.00	1.92	4.22		0.08			
Control Delay (s/veh)	7.2	12.5	117.5		15.3			
LOS	$A$	$B$	$F$		$C$			
Approach Delay (s/veh)	--	--	102.9					
Approach LOS	--	--						



Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	11	810			449	5
Peak-Hour Factor, PHF	0.96	0.96	1.00	1.00	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	11	843	0	0	467	5
Percent Heavy Vehicles	2	--	--	0	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	2	0
Configuration	LT				T	TR
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				4	0	3
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.96	0.96	0.96
$\begin{array}{l}\text { Hourly Flow Rate, HFR } \\ \text { (veh/h) }\end{array}$	0	0	0	4	0	3
Percent Heavy Vehicles	0	0	0	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	1	0
Configuration					LTR	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LT						LTR	
v (veh/h)	11						7	
C (m) (veh/h)	1086						222	
v/c	0.01						0.03	
95\% queue length	0.03						0.10	
Control Delay (s/veh)	8.3						21.7	
LOS	A						C	
Approach Delay (s/veh)	--	--					21.7	
Approach LOS	--	--					C	


TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	$160 \mathrm{~A} /$ County 502
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/10/2014	Analysis Year	2035
Analysis Time Period	PM		
Project Description 13021			
East/West Street: Highway 160A		North/South Street: County 502	
Intersection Orientation: East-West		Study Period (hrs): 1.00	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	41	772			433	21
Peak-Hour Factor, PHF	0.96	0.96	1.00	1.00	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	42	804	0	0	451	21
Percent Heavy Vehicles	2	--	--	0	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LT					TR
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				7	0	21
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.96	0.96	0.96
$\begin{array}{l}\text { Hourly Flow Rate, HFR } \\ \text { (veh/h) }\end{array}$	0	0	0	7	0	21
Percent Heavy Vehicles	0	0	0	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	1	0
Configuration					LTR	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LT						LTR	
v (veh/h)	42						28	
C (m) (veh/h)	1090						356	
v/c	0.04						0.08	
95\% queue length	0.12						0.26	
Control Delay (s/veh)	8.4						16.0	
LOS	A						C	
Approach Delay (s/veh)	--	--					16.0	
Approach LOS	--	--					C	

## Capacity Analysis for Planning of Junctions

Input Worksheet

Project Name:	US 50-Bayfield Traffic Feasibility PM Peak	Critical Lane Volume Sum    Project Number: $\quad 13021$		Acceptable Configurations	
Location	Bayfield, CO	$<1200$	$1200-1399$	$1400-1599$	$\geq 1600$
Date	December 19, 2013	27	1	0	0


Results for Intersections														
	TYPE OF INTERSECTION	Sheet	Zone 1 (North)		Zone 2 (South)		Zone 3 (East)		Zone 4 (West)		Zone 5 (Center)		Overall v/c Ratio	Ranking
\#			CLV	V/C										
1	Conventional	FULL	$7$	-	-	-	-			7	974	0.61	0.61	14
2	Conventional Shared RT LN	CSRL	7	-	-		-	-	,		848	0.53	0.53	13
3.1	Quadrant Roadway	S-W			764	0.48	7		588	0.37	553	0.35	0.48	12
3.2		N-E	500	0.31			435	0.27			671	0.42	0.42	7
3.3		S-E		$7$	421	0.26	421	0.26	$7$		474	$\underline{0.30}$	0.30	1
3.4		N-W	374	0.23				$7$	393	0.25	547	0.34	0.34	4
4.1	Partial Displaced Left Turn	N-S	427	0.27	390	0.24	$7$	$7$			677	0.42	0.42	8
4.2		E-W					456	0.28	420	0.26	499	0.31	0.31	3
5	Displaced Left Turn	FULL	427	0.27	390	0.24	456	0.28	420	0.26	492	0.31	0.31	2
6.1	Restricted Crossing U-Turn	$\underline{\mathrm{N}-\mathrm{S}}$	469	0.29	725	0.45	1226	0.77	1036	0.65		-	0.77	15
6.2		E-W	579	0.36	701	0.44	664	0.42	665	0.42			0.44	9
7.1	Median U-Turn	N-S	300	0.19	404	0.25		7	$7$	7	701	0.44	0.44	10
7.2		E-W			$7$		619	0.39	672	0.42	764	$\underline{0.48}$	0.48	11
8.1	Partial Median U-Turn	N-S	242	0.15	293	0.18					649	0.41	0.41	5
8.2		E-W			$7$		516	0.32	655	0.41	649	0.41	0.41	6

## Capacity Analysis for Planning of Junctions

Results for Roundabouts															
\#	TYPE OFROUNDABOUT	Zone 1 (North)			Zone 3 (East)			Zone 2 (South)			Zone 4 (West)			Overall v/c Ratio	Ranking
		Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3		
9.1	$1 \times 1$	0.45			1.10			1.01	-		0.81	-		1.10	5
9.2	1×2	0.38	-		0.58	0.52		0.81			0.52	0.29		0.81	3
9.3	$\underline{2 \times 1}$	0.16	0.29		0.99			0.36	0.65		0.69			0.99	4
9.4	$\underline{2 \times 2}$	0.14	0.24		0.53	0.47		0.30	0.52		0.45	0.25		0.53	2
9.5	$3 \times 3$	0.01	0.14	0.23	0.12	0.43	0.45	0.08	0.27	0.51	0.13	0.36	0.25	0.51	1


Results for Interchanges																
\#	TYPE OF INTERCHANGE	Sheet	Zone 1 (Rt Mrg)		Zone 2 (LT Mrg)		Zone 3 (Ctr. 1)		Zone 4 (Ctr. 2)		Zone 5 (Lt Mrg)		Zone 6 (Rt Mrg)		Overall v/c Ratio	Ranking
			CLV	V/C												
10.1	Diamond	N-S					649	0.41	555	$\underline{0.35}$					0.41	9
10.2		E-W					340	0.21	409	0.26					0.26	4
11.1	Partial Cloverleaf	N-S	-				149	0.09	118	0.07			,		0.09	1
11.2		E-W					553	0.31	378	0.24					0.35	7
13.1	Displaced Left Turn	N-S	233	0.15			386	0.24	365	0.23			331	0.21	0.24	3
13.2		E-W	420	0.26			278	0.17	358	0.22			523	0.33	0.33	6
14.1	Double Crossover Diamond	N-S	233	0.15	277	0.17	302	0.19	329	0.21	358	0.22	331	0.21	0.22	2
14.2		E-W	327	0.20	578	0.36	374	0.23	352	0.22	535	0.33	553	0.35	0.36	8
15.1	Single Point	N-S	446	0.28			760	0.47					522	0.33	0.47	10
15.2		E-W	327	0.20			466	0.29				-	463	0.29	0.29	5


TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	160A / North Commerce
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/10/2014	Analysis Year	2035
Analysis Time Period	PM	Analysis Year	
Project Description 13021			
East/West Street: Highway 160A		North/South Stre	mmerce Drive
Intersection Orientation	st-West	Study Period (hrs)	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	296	363	1	0	338	89
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
$\begin{array}{l}\text { Hourly Flow Rate, HFR } \\ \text { (veh/h) }\end{array}$	308	378	1	0	352	92
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	1	1	0	0	1	1
Configuration	L		TR	LT		$R$
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	5	0	0	96	1	159
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
$\begin{array}{l}\text { Hourly Flow Rate, HFR } \\ \text { (veh/h) }\end{array}$	5	0	0	100	1	165
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	1	1	0	0	1	1
Configuration	L		TR	LT		$R$


Delay, Queue Length, and Level of Service								
Approach	Eastbound	Westbound	Northbound		Southbound			
Movement	1	4	7	8	9	10	11	12
Lane Configuration	$L$	$L T$	$L$		$T R$	$L T$		$R$
v (veh/h)	308	0	5		0	101		165
C (m) (veh/h)	1116	1179	62			101		692
v/c	0.28	0.00	0.08			1.00		0.24
$95 \%$ queue length	1.14	0.00	0.26			12.31		0.94
Control Delay (s/veh)	9.5	8.1	68.1			293.9		11.8
LOS	$A$	$A$	$F$			$F$		$B$
Approach Delay (s/veh)	--	--				118.9		
Approach LOS	--	--			$F$			


TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	160A / Bayfield Parkway
Agency/Co.	Stolfus and Associates	Jurisdiction	Last La Plata County
Date Performed	12/10/2014	Analysis Year	2035
Analysis Time Period	PM		
Project Description 13021			
East/West Street: Highway 160A		North/South Stre	Parkway East
Intersection Orientation: East-West		Study Period (hrs)	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	0	311	140	16	299	0
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	0	323	145	16	311	0
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LTR			LTR		
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	111		45	0		0
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	115	0	46	0	0	0
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			1			0
Lanes	1	0	1	0	0	0
Configuration	L		$R$		$L R$	


Delay, Queue Length, and Level of Service								
Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LTR	LTR	L		$R$		LR	
v (veh/h)	0	16	115		46		0	
C (m) (veh/h)	1249	1094	328		653			
v/c	0.00	0.01	0.35		0.07			
95\% queue length	0.00	0.04	1.60		0.23			
Control Delay (s/veh)	7.9	8.3	21.9		10.9			
LOS	A	A	C		B			
Approach Delay (s/veh)	--	--	18.7					
Approach LOS	--	--	C					



Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	5	358	7	11	799	65
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	5	397	7	12	887	72
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	1	2	1	1	2	1
Configuration	L	T	$R$	L	T	$R$
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	20	1	8	29	0	18
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	22	1	8	32	0	20
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			1			0
Lanes	1	1	1	1	1	1
Configuration	L	T	$R$	L	T	$R$

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	$L$	$L$	$L$	$T$	$R$	$L$	$T$	$R$
v (veh/h)	5	12	22	1	8	32	0	20
$\mathrm{C}(\mathrm{m})(\mathrm{veh} / \mathrm{h})$	713	1151	233	139	842	156	152	612
v/c	0.01	0.01	0.09	0.01	0.01	0.21	0.00	0.03
$95 \%$ queue length	0.02	0.03	0.31	0.02	0.03	0.76	0.00	0.10
Control Delay (s/veh)	10.1	8.2	22.1	31.1	9.3	34.0	28.7	11.1
LOS	$B$	$A$	$C$	$D$	$A$	$D$	$D$	$B$
Approach Delay (s/veh)	--	--	19.1					
Approach LOS	--	--	25.2					$D$


TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	160A / Bayfield Parkway
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/11/2014	Analysis Year	2035
Analysis Time Period	AM	Analysis Year	
Project Description 13021			
East/West Street: Highway 160A		North/South Stre	Parkway West
Intersection Orientation	st-West	Study Period (hrs)	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	23	309	66	5	740	8
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	25	343	73	5	822	8
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	1	2	1	1	2	1
Configuration	L	T	$R$	L	T	$R$
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	85	0	5	26	0	54
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	94	0	5	28	0	60
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		$N$			N	
Storage		0			0	
RT Channelized			1			0
Lanes	1	1	1	1	1	1
Configuration	L	$T$	$R$	L	$T$	$R$


Delay, Queue Length, and Level of Service								
Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	L	$L$	$T$	$R$	L	T	$R$
v (veh/h)	25	5	94	0	5	28	0	60
C (m) (veh/h)	798	1139	238	170	870	175	154	639
v/c	0.03	0.00	0.39	0.00	0.01	0.16	0.00	0.09
95\% queue length	0.10	0.01	1.91	0.00	0.02	0.57	0.00	0.31
Control Delay (s/veh)	9.7	8.2	29.9	26.2	9.2	29.5	28.4	11.2
LOS	A	A	D	D	A	D	D	$B$
Approach Delay (s/veh)	--	--		28.9			17.0	
Approach LOS	--	--		D			C	

## Capacity Analysis for Planning of Junctions

Input Worksheet

Project Name:	US 50-Bayfield Traffic Feasibility PM Peak	Critical Lane Volume Sum    Project Number: $\quad 13021$		Acceptable Configurations	
Location	Bayfield, CO	$<1200$	$1200-1399$	$1400-1599$	$\geq 1600$
Date	December 19, 2013	$\mathbf{2 8}$	0	0	0


Results for Intersections														
	TYPE OF INTERSECTION	Sheet	Zone 1 (North)		Zone 2 (South)		Zone 3 (East)		Zone 4 (West)		Zone 5 (Center)		Overall v/c Ratio	Ranking
\#			CLV	V/C										
1	Conventional	FULL	$7$	-	-	-	-				639	0.40	0.40	10
2	Conventional Shared RT LN	CSRL	7	-	-	-	,	-	,		684	0.43	0.43	12
3.1	Quadrant Roadway	S-W	,		650	0.41			398	0.25	504	0.31	0.41	11
3.2		N-E	523	0.33			453	0.28			384	0.24	0.33	6
3.3		S-E		$7$	483	0.30	483	0.30	$7$	$7$	411	$\underline{0.26}$	0.30	5
3.4		N-W	318	0.20	$7$			$7$	362	0.23	472	0.30	0.30	4
4.1	Partial Displaced Left Turn	N-S	341	0.21	242	0.15	$7$	$7$			442	0.28	0.28	3
4.2		E-W					346	0.22	87	0.05	423	0.26	0.26	2
5	Displaced Left Turn	FULL	341	0.21	242	0.15	346	0.22	87	0.05	322	0.20	0.22	1
6.1	Restricted Crossing U-Turn	$\underline{\mathrm{N}-\mathrm{S}}$	312	0.20	379	0.24	695	0.43	426	0.27		-	0.43	13
6.2		E-W	492	0.31	481	0.30	429	0.27	541	0.34	$7$		0.34	7
7.1	Median U-Turn	N-S	324	0.20	367	0.23	$7$	$7$	$7$	$7$	859	0.54	0.54	15
7.2		E-W			$7$	$7$	287	0.18	604	0.38	709	0.44	0.44	14
8.1	Partial Median U-Turn	N-S	256	0.16	447	0.28		$7$		$7$	626	0.39	0.39	8
8.2		E-W				$7$	249	0.16	365	0.23	626	0.39	0.39	8

## Capacity Analysis for Planning of Junctions

Results for Roundabouts															
\#	TYPE OFROUNDABOU$T$	Zone 1 (North)			Zone 3 (East)			Zone 2 (South)			Zone 4 (West)			Overall v/c Ratio	Ranking
		Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3		
9.1	$1 \times 1$	0.46			0.52			0.59			0.40	,		0.59	5
9.2	1×2	0.44	,		0.23	0.29		0.51			0.17	0.23		0.51	4
9.3	$\underline{2 \times 1}$	0.25	0.21		0.46	,		0.17	0.42		0.36	,		0.46	3
9.4	$\underline{2 \times 2}$	0.24	0.20		0.20	0.26		0.15	0.37		0.16	0.21		0.37	2
9.5	$3 \times 3$	0.10	0.14	0.18	0.04	0.17	0.23	0.02	0.14	0.32	0.08	0.08	0.18	0.32	1


Results for Interchanges																
\#	TYPE OF INTERCHANGE	Sheet	Zone 1 (Rt Mrg)		Zone 2 (Lt Mrg)		Zone 3 (Ctr. 1)		Zone 4 (Ctr. 2)		Zone 5 (Lt Mrg)		Zone 6 (Rt Mrg)		Overall v/c Ratio	Ranking
			CLV	V/C												
10.1	Diamond	N-S					440	0.28	393	$\underline{0.25}$					0.28	8
10.2		E-W					264	0.17	183	0.11					0.17	1
11.1	Partial Cloverleaf	N-S	,				125	0.08	270	0.17			,		0.17	2
11.2		E-W					278	0.33	116	0.07					0.17	3
13.1	Displaced Left Turn	N-S	321	0.20			339	0.21	176	0.11			231	0.14	0.21	5
13.2		E-W	187	0.12			306	0.19	232	0.15			422	0.26	0.26	7
14.1	Double Crossover Diamond	N-S	321	0.20	285	0.18	260	0.16	217	0.14	170	0.11	231	0.14	0.20	4
14.2		E-W	207	0.13	158	0.10	338	0.21	107	0.07	276	0.17	448	0.28	0.28	9
15.1	Single Point	N-S	465	0.29			635	0.40					358	0.22	0.40	10
15.2		E-W	207	0.13			416	0.26					381	0.24	0.26	6


TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	160A / North Commerce
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/11/2014	Analysis Year	2035
Analysis Time Period	AM	Anysis Year	
Project Description 13021			
		North/South Street: North Commerce Drive	
		Study Period (hrs)	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	136	363			291	58
Peak-Hour Factor, PHF	0.90	0.90	0.96	0.96	0.90	0.90
$\begin{aligned} & \text { Hourly Flow Rate, HFR } \\ & \text { (veh/h) } \end{aligned}$	151	403	0	0	323	64
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	1	2	0	0	2	1
Configuration	L	T			T	$R$
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)						180
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	0	0	200
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		$N$			N	
Storage		0			0	
RT Channelized			1			0
Lanes	0	0	0	0	0	1
Configuration						$R$


Delay, Queue Length, and Level of Service								
Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L							$R$
v (veh/h)	151							200
C (m) (veh/h)	1168							882
v/c	0.13							0.23
95\% queue length	0.45							0.88
Control Delay (s/veh)	8.5							10.3
LOS	A							B
Approach Delay (s/veh)	--	--					0.3	
Approach LOS	--	--					B	


TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	160A / Bayfield Parkway
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/11/2014	Analysis Year	2035
Analysis Time Period	AM		
Project Description 13021			
East/West Street: Highway 160A		North/South Stre	Parkway East
Intersection Orientation	st-West	Study Period (hrs)	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	0	153	56	29	244	0
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	170	62	32	271	0
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	1	2	1	1	2	1
Configuration	L	T	$R$	L	T	$R$
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	99	1	14	52	0	0
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	110	1	15	57	0	0
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		$N$			N	
Storage		0			0	
RT Channelized			1			0
Lanes	1	1	1	1	1	1
Configuration	L	$T$	$R$	L	T	$R$


Delay, Queue Length, and Level of Service								
Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	$L$	L	$T$	$R$	L	T	$R$
v (veh/h)	0	32	110	1	15	57	0	0
C (m) (veh/h)	1289	1333	552	457	973	499	422	911
v/c	0.00	0.02	0.20	0.00	0.02	0.11	0.00	0.00
95\% queue length	0.00	0.07	0.74	0.01	0.05	0.39	0.00	0.00
Control Delay (s/veh)	7.8	7.8	13.1	12.9	8.8	13.1	13.5	9.0
LOS	A	A	B	B	A	B	B	A
Approach Delay (s/veh)	--	--		12.6			13.1	
Approach LOS	--	--		B			B	



Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	8	945	7	8	495	32
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	8	984	7	8	515	33
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	1	2	1	1	2	1
Configuration	L	T	$R$	L	T	$R$
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	18	0	19	74	3	18
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	18	0	19	77	3	18
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			1			0
Lanes	1	1	1	1	1	1
Configuration	L	T	$R$	L	T	$R$

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	L	$L$	T	$R$	L	T	$R$
v (veh/h)	8	8	18	0	19	77	3	18
C (m) (veh/h)	1018	693	117	109	575	176	113	779
v/c	0.01	0.01	0.15	0.00	0.03	0.44	0.03	0.02
95\% queue length	0.02	0.04	0.54	0.00	0.10	2.23	0.08	0.07
Control Delay (s/veh)	8.6	10.3	41.3	38.0	11.5	41.1	37.7	9.7
LOS	A	B	E	E	B	E	E	A
Approach Delay (s/veh)	--	--	26.0			35.3		
Approach LOS	--	--	D			E		


TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	160A / Bayfield Parkway
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/11/2014	Analysis Year	2035
Analysis Time Period	PM	Analysis Year	
Project Description 13021			
East/West Street: Highway 160A		North/South Stre	Parkway West
Intersection Orientation	st-West	Study Period (hrs)	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	52	774	222	12	422	26
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	54	806	231	12	439	27
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	1	2	1	1	2	1
Configuration	L	T	$R$	$L$	T	$R$
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	57	0	6	11	0	54
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	59	0	6	11	0	56
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			1			0
Lanes	1	1	1	1	1	1
Configuration	L	T	$R$	L	$T$	$R$


Delay, Queue Length, and Level of Service								
Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	L	$L$	$T$	$R$	L	T	$R$
v (veh/h)	54	12	59	0	6	11	0	56
C (m) (veh/h)	1092	666	134	129	646	194	97	818
v/c	0.05	0.02	0.44	0.00	0.01	0.06	0.00	0.07
95\% queue length	0.16	0.06	2.23	0.00	0.03	0.18	0.00	0.22
Control Delay (s/veh)	8.5	10.5	52.6	32.9	10.6	24.7	42.1	9.7
LOS	A	B	$F$	D	$B$	C	E	A
Approach Delay (s/veh)	--	--		48.7			12.2	
Approach LOS	--	--		$E$			B	

## Capacity Analysis for Planning of Junctions

Input Worksheet

Project Name:	US 50-Bayfield Traffic Feasibility PM Peak	Critical Lane Volume Sum    Project Number: $\quad 13021$		Acceptable Configurations	
Location	Bayfield, CO	$<1200$	$1200-1399$	$1400-1599$	$\geq 1600$
Date	December 19, 2013	27	1	0	0


Results for Intersections														
	TYPE OF INTERSECTION	Sheet	Zone 1 (North)		Zone 2 (South)		Zone 3 (East)		Zone 4 (West)		Zone 5 (Center)		Overall v/c Ratio	Ranking
\#			CLV	V/C										
1	Conventional	FULL	$7$	-	-	-	-			7	974	0.61	0.61	14
2	Conventional Shared RT LN	CSRL	7	-	-		-	-	,		848	0.53	0.53	13
3.1	Quadrant Roadway	S-W			764	0.48	7		588	0.37	553	0.35	0.48	12
3.2		N-E	500	0.31			435	0.27			671	0.42	0.42	7
3.3		S-E		$7$	421	0.26	421	0.26	$7$		474	$\underline{0.30}$	0.30	1
3.4		N-W	374	0.23				$7$	393	0.25	547	0.34	0.34	4
4.1	Partial Displaced Left Turn	N-S	427	0.27	390	0.24	$7$	$7$			677	0.42	0.42	8
4.2		E-W					456	0.28	420	0.26	499	0.31	0.31	3
5	Displaced Left Turn	FULL	427	0.27	390	0.24	456	0.28	420	0.26	492	0.31	0.31	2
6.1	Restricted Crossing U-Turn	$\underline{\mathrm{N}-\mathrm{S}}$	469	0.29	725	0.45	1226	0.77	1036	0.65		-	0.77	15
6.2		E-W	579	0.36	701	0.44	664	0.42	665	0.42			0.44	9
7.1	Median U-Turn	N-S	300	0.19	404	0.25		7	$7$	7	701	0.44	0.44	10
7.2		E-W			$7$		619	0.39	672	0.42	764	$\underline{0.48}$	0.48	11
8.1	Partial Median U-Turn	N-S	242	0.15	293	0.18					649	0.41	0.41	5
8.2		E-W			$7$		516	0.32	655	0.41	649	0.41	0.41	6

## Capacity Analysis for Planning of Junctions

Results for Roundabouts															
\#	TYPE OFROUNDABOUT	Zone 1 (North)			Zone 3 (East)			Zone 2 (South)			Zone 4 (West)			Overall v/c Ratio	Ranking
		Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3		
9.1	$1 \times 1$	0.45			1.10			1.01	-		0.81	-		1.10	5
9.2	1×2	0.38	-		0.58	0.52		0.81			0.52	0.29		0.81	3
9.3	$\underline{2 \times 1}$	0.16	0.29		0.99			0.36	0.65		0.69			0.99	4
9.4	$\underline{2 \times 2}$	0.14	0.24		0.53	0.47		0.30	0.52		0.45	0.25		0.53	2
9.5	$3 \times 3$	0.01	0.14	0.23	0.12	0.43	0.45	0.08	0.27	0.51	0.13	0.36	0.25	0.51	1


Results for Interchanges																
\#	TYPE OF INTERCHANGE	Sheet	Zone 1 (Rt Mrg)		Zone 2 (LT Mrg)		Zone 3 (Ctr. 1)		Zone 4 (Ctr. 2)		Zone 5 (Lt Mrg)		Zone 6 (Rt Mrg)		Overall v/c Ratio	Ranking
			CLV	V/C												
10.1	Diamond	N-S					649	0.41	555	$\underline{0.35}$					0.41	9
10.2		E-W					340	0.21	409	0.26					0.26	4
11.1	Partial Cloverleaf	N-S	-				149	0.09	118	0.07			,		0.09	1
11.2		E-W					553	0.31	378	0.24					0.35	7
13.1	Displaced Left Turn	N-S	233	0.15			386	0.24	365	0.23			331	0.21	0.24	3
13.2		E-W	420	0.26			278	0.17	358	0.22			523	0.33	0.33	6
14.1	Double Crossover Diamond	N-S	233	0.15	277	0.17	302	0.19	329	0.21	358	0.22	331	0.21	0.22	2
14.2		E-W	327	0.20	578	0.36	374	0.23	352	0.22	535	0.33	553	0.35	0.36	8
15.1	Single Point	N-S	446	0.28			760	0.47					522	0.33	0.47	10
15.2		E-W	327	0.20			466	0.29				-	463	0.29	0.29	5



Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	296	363			344	89
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	308	378	0	0	358	92
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	1	2	0	0	2	1
Configuration	L	T			T	$R$
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)						159
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	0	0	0	0	0	165
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		$N$			N	
Storage		0			0	
RT Channelized			1			0
Lanes	0	0	0	0	0	1
Configuration						$R$


Delay, Queue Length, and Level of Service								
Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L							$R$
v (veh/h)	308							165
C (m) (veh/h)	1107							863
v/c	0.28							0.19
95\% queue length	1.15							0.71
Control Delay (s/veh)	9.5							10.2
LOS	A							B
Approach Delay (s/veh)	--	--					0.2	
Approach LOS	--	--					B	


TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	Max Rusch	Intersection	160A / Bayfield Parkway East
Agency/Co.	Stolfus and Associates	Jurisdiction	La Plata County
Date Performed	12/11/2014	Analysis Year	2035
Analysis Time Period	PM		
Project Description 13021			
East/West Street: Highway 160A		North/South Street:	Parkway East
Intersection Orientation	t-West	Study Period (hrs):	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	0	215	141	16	299	0
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	0	223	146	16	311	0
Percent Heavy Vehicles	2	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	1	2	1	1	2	1
Configuration	L	T	$R$	L	T	$R$
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	117	0	45	96	1	0
Peak-Hour Factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96
Hourly Flow Rate, HFR (veh/h)	121	0	46	100	1	0
Percent Heavy Vehicles	2	2	2	2	2	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			1			0
Lanes	1	1	1	1	1	1
Configuration	$L$	$T$	$R$	L	$T$	$R$


Delay, Queue Length, and Level of Service								
Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	$L$	$L$	$T$	$R$	L	T	$R$
v (veh/h)	0	16	121	0	46	100	1	0
C (m) (veh/h)	1246	1186	518	426	940	460	351	888
v/c	0.00	0.01	0.23	0.00	0.05	0.22	0.00	0.00
95\% queue length	0.00	0.04	0.91	0.00	0.15	0.83	0.01	0.00
Control Delay (s/veh)	7.9	8.1	14.1	13.5	9.0	15.0	15.3	9.1
LOS	A	A	B	B	A	B	C	A
Approach Delay (s/veh)	--	--		12.7			15.0	
Approach LOS	--	--		B			B	

Appendix D - Access Plan Methodology and Evaluation Process

Project Goal	Evaluation Criteria	Rating		Reasoning	Status with Respect to Criteria			
				Favorable (+)	Neutral (0)	Unfavorable (-)		
Provide effective through travel for traffic on US 160	Highway LOS	Favorable			The Access Plan is compatible with the US 160 EIS improvements, which improve the highway from a two-lane undivided section to a four-lane divided highway. This improvement, along with the restriction would result in a higher LOS for the corridor according to the Highway Capacity Manual.	Improves from No-ACP scenario	Little or no change from No-ACP scenario	Worsens from No-ACP scenario
	Number of Access Points	Favorable		The number of access points is reduced from 39 to 17 .	Less access	No change in access	More access	
Provide safe and effective access to and from US 160 for businesses, residents, and emergency responders	Intersection Sight Distance	Favorable		Existing access points with inadequate sight distance are restricted or eliminated.	More intersections have adequate sight distance	Same number of intersections have adequate sight distance	Fewer intersections have adequate sight distance	
	Intersection v/c	Favorable		Analysis of future traffic shows reduced $\mathrm{v} / \mathrm{c}$ ratios with the Access Plan when compared to no improvements in the area.	v/c decreases for most intersections as compared to the No-ACP scenario	Little or no change to $\mathrm{v} / \mathrm{c}$ for most intersections as compared to the No-ACP scenario	\|v/c increases for most intersections as compared to the No-ACP scenario	
	Conformance with State Highway Access Code Auxiliary Lane Requirements	eutral		Most existing access points that may someday warrant auxiliry lanes already have sufficient spacing.	More locations meet auxiliary lane standards	Some locations meet auxiliary lane standards	Fewer locations meet auxiliary lane standards	
	Out of Direction Travel Distance	Unfavorable	-1	Access restrictions require traffic from individual properties to turn right on to the highway and then turn around at the next intersection.	Less out-of-direction travel distance is required	No change	More out-of-direction travel distance is required	
	Intersection Crash Risk	Favorable		The number of the conflict points at intersections in the corridor is reduced.	Reduced by implementing needed physical improvements and access control measures	Maintained by implementing needed physical improvements only	Increased due to failure to implement needed physical improvements or access control	
Maintain compatibility with existing and proposed off-highway circulation routes	Local Route Connectivity	Unfavorable		Restricted access at the existing CR 506 and CR 502 intersections with US 160 will require local traffic to travel farther for highway access.	Improve connectivity of local routes	Maintain connectivity of local routes	Reduce connectivity of local routes	
	Serviceability of Local Routes to Developments and Properties within the Study Area	Favorable		Access Plan allows for future local road connectivity with US 160 at CR 507 and Bayfield Parkway (East and West).	Improve serviceability of local routes	Maintain serviceability of local routes	Reduce serviceability of local routes	
Provide a plan that can be implemented in phases	Funding Opportunities	Neutral		Future local roads on the north side of US 160 at Bayfield Parkway (East and West) and the future connection from CR 507/US 160 to Homestead Drive allow access to currently undeveloped land. Both developer and/or local funding could be used to make the improvements. The north leg of the future CR 507 intersection with US 160 would likely be funded publicly with the US 160 EIS improvements, but could also attract some private funds. The local road connection from CR 502 to CR 506 as well as improvements on the south side of US 160 at Bayfield Parkway (West) are unlikely to attract private funding.	Commitment for public and/or private funding	Opportunity for public and/or private funding	Opportunity for public and/or private funding unlikely	
	Phasing Opportunities	Favorable		With the exception of the Bayfield Parkway/Homestead Drive improvements on the south side of US 160 , local road improvements are compatible with development and can be easily phased to progress toward the final access plan.	Plan recommendations can be segmented into logical, compatible pieces funded by private development	Plan recommendations can be segmented into logical, compatible pieces requiring public \& private funding	Plan recommendations not easily segmented and require significant public investment to implement	
Support the economic viability of the project area	Business Access	Neutral		The plan generally maintains existing access for businesses in Bayfield and Gem Village, with the exception of the south Commerce Drive driveway.	Expands market area for the majority of businesses in the corridor	Market area maintained for a majority of businesses in the corridor	Reduced market area for a majority of businesses in the corridor	
Maintain compatibility with the intent of previous planning efforts	Compatibility with Local Planning	Favorable		The Access Plan is compatible with local road plans for Bayfield Parkway (East). Addtionally, access points at Bayfield Parkway (West) and US 160 are set for future planning.	Expands/improves upon the intent of previous local planning recommendations	Consistent with the intent of previous local planning recommendations	Not consistent with the intent of previous local planning efforts	
	Compatibility with the US 160 EIS	Neutral		The Access Plan maintains the same number of full movement access points as the US 160 ROD.	Plan is consistent with the Purpose and Need and enhances the Preferred Alternative	Plan is consistent with the Purpose and Need	Plan is not consistent with the Purpose and Need	
Provide a plan that is consistent with local intersection priorities	Compatibility with the improvement priorities of Town and County staff	Favorable		The Access Plan establishes access points at the intersections with the highest local priority located at both ends of Bayfield Parkway.	Plan priotitizes most of the intersections most in need of improvement	Plan prioritizes some of the intersections most in need of improvement	Plan does not priortize the intersections most in need of improvement	
Endeavor to provide a plan that is adoptable by all entities	Physical Constraints	Neutral		Local Road connections at Bayfield Parkway (West) and the connection from CR 502 to CR 506 face significant, but not unmanageable physical constraints.	No physical constraints	Manageable physical constraints	Physical constraints are not manageable	
	Support from Town Board and County Commission	Favorable		e Town and County Boards both support the plan.	Plan is favored by most officials	Plan support is balanced	Plan is not favored by most officials	

## Appendix E - Intergovernmental Agreement

## INTERGOVERNMENTAL AGREEMENT <br> BETWEEN

THE TOWN OF BAYFIELD (THE TOWN), LA PLATA COUNTY (THE COUNTY) and THE STATE OF COLORADO DEPARTMENT OF TRANSPORTATION (THE DEPARTMENT)
FOR THE BAYFIELD ACCESS CONTROL PLAN
THIS INTERGOVERNMENTAL AGREEMENT is entered into effective as of this ___ day of ___ 20__, by and between the Town, the County, and the Department, all of said parties being referred to collectively herein as "Agencies."

## RECITALS

A. The Agencies are authorized by the provisions of Article XIV, Section 18(2)(a), Colorado Constitution, and Sections 29-1-201 et. Seq., C.R.S., to enter into contracts with each other for the performance of functions which they are authorized by law to perform on their own; and
B. Each Agency is authorized by Section 43-2-147(I)(a), C.R.S., to regulate access to public highways within its respective jurisdiction; and
C. The coordinated regulation of vehicular access to public highways is necessary to maintain the efficient and smooth flow of traffic, to reduce the potential for traffic accidents, to protect the functional level and optimize the traffic capacity, and to provide an efficient spacing of traffic signals and access points; and
D. The Agencies desire to provide for the coordinated regulation of vehicular, pedestrian, and bicycle access and safety for the US Hwy 160 corridor through Gem Village (La Plata County) and Bayfield as follows:

MP 100.25 and MP 103.82 (hereafter referred to as the "Segments") which is within the jurisdiction of the Agencies; and
E. The Agencies are authorized pursuant to Section 2.12 of the 1998 State Highway Access Code, 2 C.C.R. 601-1, (the "Access Code") to enter into a written agreement adopting and implementing a comprehensive and mutually acceptable highway access control plan for the Segments for the purposes above recited; and
F. The Agencies specifically find and determine that this access control plan is a necessary exercise of each Agency's legislative, governmental, or police powers to promote and protect the public health, safety, and general welfare of the citizens of the Town, County, and State; and
G. The development of this Access Control Plan (ACP) adheres to the requirements of the Access Code, Section 2.12.

NOW THEREFORE, for and in consideration of the mutual promises, agreements, and commitments herein contained, the Agencies agree as follows:

1. The Access Control Plan, dated $\qquad$ , for the Segments (herein referred to as the "ACP") is attached hereto as Exhibits $\underline{A}, \underline{B}$, and $\underline{C}$, and incorporated herein by this reference.
2. The Agencies shall regulate access to Highway 160 in accordance with the ACP, C.R.S. Section 42-2-147 C.R.S. (the "Access Law"), and the applicable sections of the Access Code. Vehicular access to Highway 160 within the Segments may be permitted only when such access in in compliance with this Agreement, the ACP, the Access Law, and the applicable sections of the Access Code. Per section 2.12(3) of the Access Code, all action taken in regard to access shall be in conformance with the plan and current Code design standards unless both the Department and the local authority(s) approve a geometric design waiver under the waiver subsection of the Code.
3. Access points that were in existence prior to the effective date of this Agreement may continue in existence until such time as a change in the access is required by the Access Control Plan, the Access Law, in the course of highway reconstruction, or as determined appropriate in the course of development, redevelopment, subdivision actions or change of use by the Town or County. When closure, modification, or relocation of access is necessary or required, the Agencies having jurisdiction shall utilize appropriate legal process to effect such action.
4. Actions taken by the Agencies with regard to transportation planning, transportation facilities, and traffic operations within the ACP shall be in conformity with this Agreement. The Agencies agree to develop and adopt the necessary ordinances, official documents, plans and maps to fulfill their respective responsibilities under this Agreement.
5. Parcels of real property created after the effective date of this Agreement which adjoin the Segments shall be provided with access to the Segments as documented in the ACP, so long as the use, location, and design thereof, conform to the provisions of this Agreement, the Town and County Codes, or based upon approved amendments to the ACP.
6. This Agreement is based upon and intended to be consistent with the Access Law and Access Code.
7. This Agreement does not create any current specific financial obligation for any of the Agencies. Any further financial obligation of any Agency shall be subject to the execution of an appropriate encumbrance document, where required. Agencies involved in or affected by any particular or site-specific undertaking provided for herein will cooperate with each other to agree upon a fair and equitable allocation of the costs associated therewith. Notwithstanding any provision of this Agreement, no Agency shall be required to expend its public funds for such undertaking without the express prior approval of its governing body or director. All financial obligations of the Agencies hereunder shall be approved by its governing body or director. All financial obligations of the Agencies hereunder shall be contingent upon sufficient funds therefore being appropriated, budgeted, and otherwise made available.
8. Should any section(s) or provision(s) of this Agreement be judicially determined invalid or unenforceable, such judgment shall not affect, impair, or invalidate the remaining provisions of this Agreement, the intention being that the various provisions hereof are severable.
9. This Agreement supersedes and controls all prior written and oral agreements and representations of the Agencies concerning regulating vehicular access to the Segments. No additional or different oral representation, promise, or agreement shall be binding on any Agency.

US 160 Town of Bayfield Access Control Plan Resolution and Intergovernmental Agreement
10. This Agreement may be amended or terminated only in writing executed by the Agencies with express authorization from their respective governing bodies or legally designated officials. To the extent the Access Control Plan is modified by a change, closure, relocation, consolidation, or addition of an access, the Agencies may amend the attached Access Control Plan so long as the amendment is executed in writing and amended in accord with Access Law and the Access Code. The Access Control Plan Amendment Process is attached hereto and is incorporated in Exhibit C.
11. By Signing this Agreement, the Agencies acknowledge and represent to one another that all procedures necessary to validly contract and execute this Agreement have been performed, and that the persons signing for each Agency have been duly authorized to sign.
12. No portion of this Agreement shall be deemed to constitute a waiver of any immunities the parties or their officers or employees may possess, nor shall any portion of this Agreement be deemed to have created a duty of care which did not previously exist with respect to any person not a party to this Agreement.
13. It is expressly understood and agreed that the enforcement of the terms and conditions of this Agreement, and all rights of action relating to such enforcement, shall be strictly reserved to the undersigned parties and nothing in this Agreement shall give or allow any claim or right of action whatsoever by any other person not included in this Agreement. It is an express intention of the undersigned parties that any entity other than the undersigned parties receiving services or benefits under this Agreement shall be an incidental beneficiary only.

IN WITNESS THEREOF, the Agencies have executed this Agreement effective as of the day and year written above.

Town of Bayfield, Colorado
Dr. Rick K. Smith Date
Mayor, Town of Bayfield

Approved as to Form:

Town Attorney Date

La Plata County, Colorado

Gwen Lachelt $\quad$ Date
Board of County Commissioners, Chair

Approved as to Form:

County Attorney Date

State of Colorado
Department of Transportation

Kerrie Neet Date
Region Transportation Director

CONCUR:

Joshua Laipply, PE, Date
Chief Engineer

## ATTEST:

Name of Town Clerk Date
Town Clerk

## ATTEST:

Name of Clerk Date

Clerk to the Board

## ATTEST:

Chief Clerk Date

## Exhibit A \& B

## ACCESS CONTROL PLAN

United States Highway 160 between MP 100.25 and MP 103.82
Town of Bayfield, La Plata County, and the State of Colorado Department of Transportation

## I. Purpose

The purpose of this Access Control Plan (ACP) is to provide the Agencies with a comprehensive roadway access control plan for the pertinent segments of United States Highway 160 through Bayfield, Colorado.

## II. Authority

The development of this Access Control Plan was completed pursuant to the requirements of the Access Code, Section 2.12, and adopted by the attached Agreement.

## III. Responsibilities

It is the responsibility of each of the Agencies to this Agreement to ensure that vehicular access to the Segments shall only be in conformance with this Agreement. The cost of access improvements, closures and modifications shall be determined pursuant to section 43-2-147(6)(b) C.R.S., the Agreement, and this Access Control Plan. All access construction shall be consistent with the design criteria and specifications of the Access Code.

## IV. Existing and Future Access

A. The attached table (Exhibit A) provides a listing of each existing and future access point in the Segments. The Attached Map (Exhibit B) shows the access points along the Segments of United States Highway 160 through Bayfield. For each access point the following information is provided: location, description of the current access status, and the proposed configuration or condition for change (Access Plan). All access points are defined by the approximate Department mile point (in hundredths of a mile) along United States Highway 160. All access points are located at the approximate centerline of the access.
B. All highway design and construction will be based on the assumption that the Segments will have a sufficient cross section to accommodate all travel lanes and sufficient right-of-way to accommodate longitudinal installation of utilities.

## Exhibit C

## ACCESS CONTROL PLAN AMENDMENT PROCESS <br> United States Highway 160 between MP $\mathbf{1 0 0 . 2 5}$ and MP 103.82

## Town of Bayfield, La Plata County, and the State of Colorado Department of Transportation

Any request for amendment must be submitted to the Department's Region 5 Access Manager by a signatory of the Agreement (either of the Agencies). The amendment must be located within the jurisdiction and have the written support of the submitting signatory. Amendments shall be required for any change to the Access Control Plan as shown in the Exhibit A and B, including, but not limited to, any new or changes to the location of:

1. Signalized intersections
2. Full movement intersections/access points
3. $3 / 4$ intersections/access points
4. Right-in/right-out only intersections/access points

The amendment request shall include the following documents:

1. Descriptions of the proposed access and changes to the Access Control Plan.
2. Justification for the requested amendment.
3. For signalized intersections, a supporting Traffic Impact Study per the State Highway Access Code.
4. A list of any requested design waivers as applicable.
5. A proposed revised plan sheet clearly depicting the access modifications. The revised plan sheet will replace the corresponding sheet in Exhibit B.

Upon Submission of Information:

1. The Department shall review the submittal for completeness and for consistency with the access objectives, principles, and strategies described in the United States Highway 160 - Town of Bayfield Access Control Plan and the State Highway Access Code ("Access Code"). The Department shall also determine if any applicable design waivers can be granted. Any amendment request that results in a violation of the Access Code or for which a design waiver cannot be granted will not be considered.
2. If the amendment request is found to be complete, it will be forwarded, along with a brief report, to an Access Control Plan Advisory Committee, consisting of representatives from the Town, the County and the Department. Each Agency is responsible for appointing one Advisory Committee Member. An Alternative Advisory Committee Member may be appointed as an alternate.
3. After receipt of the conditions or modifications, each Advisory Committee Member will be responsible for coordinating their Agency review and providing a decision on whether to accept or decline the amendment. The Advisory Committee Members will have 30 days to submit their Agency's vote to the Department Region 5 Access Manager in writing.

[^1]4. A unanimous decision of the Agencies will be necessary to approve the amendment. An agency not responding within the 30 -day period will be interpreted as a "decline" decision. The Department will provide voting results, to include a tally sheet documenting each agency vote, to all Advisory Committee Members within 15 days of receiving all votes, or following the 30 day review period. If the votes of the Advisory Committee members are not unanimous, the Advisory Committee shall convene a meeting of its membership to jointly discuss the amendment request and the positions of each member.
5. Acceptable votes from the Agencies include: accept without modifications; accept with conditions or modifications; or disapprove.
6. If an Agency accepts with conditions or modifications, the Agency requesting the condition or the modification must provide supporting justification and any applicable requests for a design waiver. Any vote to accept with conditions or modifications that results in a violation of the Access Code or for which a design waiver cannot be granted will not be considered.
7. If found to be complete, the Department will forward the conditions or modifications to all members of the Access Control Plan Advisory Committee.
8. After the receipt of the conditions or modifications, each Advisory Committee Member will be responsible for coordinating their Agency review and providing a decision on whether to accept or decline the conditions and modifications.
9. The Advisory Committee Members will have 20 days to submit their agency's subsequent vote to the Department in writing.
10. A unanimous vote of the Agencies will be necessary to approve the conditions and modifications. An Agency not responding within the 20-day period will be interpreted as a "decline" decision.
11. The Department will provide voting results to all Advisory Committee Members within 10 days of receiving all votes, or following the 20 day review period.

Access ID No.	Reference Point ${ }^{1}$	Side ${ }^{2}$	Parcel Number	Description/Current Owner	Existing Configuration	Proposed Configuration ${ }^{3}$	Condition ${ }^{4}$
1	100.30	LT		CR 508/Gem Lane	Unsignalized Full Movement	Right-In, Right-Out Special Use Access Only	Gated at next Special Use Permit Application. Temporary access available with Special Use Permit only. Restricted to Right-In, Right-Out with US 160 improvement on current alignment.
2	100.38	RT		US 160 Frontage Road (South)	Unsignalized Full Movement	Close Access - Access via CR 507 available	Restricted to Right-In, Right Out with redevelopment affecting traffic operations and/or safety, or with US 160 improvement on current alignment. Close access when a Frontage Road (South) turnaround for heavy vehicles is available.
3	100.56	LT		CR 507	Unsignalized Full Movement	Unsignalized Full Movement	
4	100.56	RT		US 160 Frontage Road (South)	Unsignalized Full Movement	Unsignalized Full Movement	
5	100.80	RT		US 160 Frontage Road (South)	Unsignalized Full Movement	3/4 Movement (Left-In, Right-In, and Right-Out only)	Restricted with redevelopment affecting traffic operations and/or safety, or with US 160 improvement on current alignment.
6	100.80	LT		US 160 Frontage Road (North)	Unsignalized Full Movement	3/4 Movement (Left-In, Right-In, and Right-Out only)	Restricted with redevelopment affecting traffic operations and/or safety, or with US 160 improvement on current alignment.
7	100.90	RT	567715201800	Homestead Trails Property Owners Association	Unsignalized Full Movement	Close Access - Access available via Homestead Dr	Closed with property redevelopment or US 160 improvement on current alignment.
8	100.90	LT	567715200807	Smith, Calvin L \& Cecelia E Trustees	Unsignalized Full Movement	Close Access - Shared at Access 9	Closed with property redevelopment or US 160 improvement on current alignment.
9	100.94	LT	567715200807	Smith, Calvin L \& Cecelia E Trustees	Unsignalized Full Movement Shared Access	Right-In, Right-Out - Shared Access	Restricted with property redevelopment or US 160 improvement on current alignment. Cross-access exists with Property No. 567715200111 and shall be formalized with redevelopment of either property.
	100.99			Milepost 101			
10	101.03	RT	567715201800	Homestead Trails Property Owners Association	Unsignalized Full Movement	Close Access - Access available via Homestead Dr	Closed upon property redevelopment or US 160 improvement on current alignment.
11	101.03	LT	567715200111	Perkins, James B \& Gwen B	Unsignalized Full Movement	Close Access - Shared at Access 9	Closed with Cross Access Agreement at Access 9 and either property redevelopment or US 160 improvement on current alignment.
12	101.08	RT		Utility Access Road	Unsignalized Full Movement	Right-In, Right-Out Maintenance Access Only	Restricted upon US 160 improvement.
12a	101.10*	RT	567715202801	Homestead at Bayfield LLC, The	Unsignalized Full Movement	Close Access - Access available via Homestead Drive	Closed with property redevelopment.
12b	101.15*	RT	567715202801	Homestead at Bayfield LLC, The	Unsignalized Full Movement	Close Access - Access available via Homestead Dr	Closed with property redevelopment.
12c	101.17*	RT	567715202800	Homestead at Bayfield LLC, The	Unsignalized Full Movement	Close Access - Access via Homestead Dr	Closed with property redevelopment.
13	101.09	LT	567715200021	Beaver, Phyllis A	Unsignalized Full Movement	Right-In, Right-Out	Restricted with property redevelopment or US 160 improvement.
14	101.37	RT	567715100082	Tucker, Don	Unsignalized Full Movement	Close Access - Access available via future secondary roadways or shared access	Restricted to Right-In, Right Out with US 160 improvement or property redevelopment. Close access with property redevelopment and secondary roadway/shared access to Access 15 (Bayfield Parkway West).

[^2]| Access ID No. | Reference <br> Point ${ }^{1}$ | Side ${ }^{2}$ | Parcel Number | Description/Current Owner | Existing Configuration | Proposed Configuration ${ }^{3}$ | Condition ${ }^{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | 101.42 | RT |  | Bayfield Parkway (West) | Unsignalized Full Movement | Full Movement with potential for signalization | Signalization is only allowable with secondary roadway improvements that correct intersection geometry and provide sufficient vehicle storage between US 160 and Bayfield Parkway. Signal shall be implemented only when warranted by current MUTCD standards. |
| 16 | 101.42 | LT | 567710400801 | Peeples, Peyton Paul \& Dianne M | Unsignalized Full Movement | Full Movement with potential for signalization | Signalization is only allowable with secondary roadway improvements to correct intersection geometry and provide sufficient vehicle storage between US 160 and Bayfield Parkway. Signal shall be implemented only when warranted by current MUTCD standards. Cross access agreement shall be required between Property Nos. 567710400018 , 567710400033,567710300800 , and 567710400034 upon redevelopment or ownership change. |
| 17 | 101.50 | LT | 567710400018 | Casper, Charles C \& Shirley A | Unsignalized Full Movement | Close Access - Access 18 available | Closed with property redevelopment or US 160 improvement. |
| 18 | 101.59 | LT | 567710400018 | Casper, Charles C \& Shirley A | Unsignalized Full Movement | Close Access - Access available via future secondary roadways/shared access | Restricted to Right-In, Right Out with US 160 improvement. Close access with property redevelopment and secondary roadway/shared access to Access 16 (Bayfield Parkway West). |
| 19 | 101.83 | RT | 567711300800 | Grush, Kevin R \& Terry S \& Trout, Carol | Unsignalized Full Movement | Close Access - Access to CR 509 available | Restricted to Right-In, Right Out with US 160 improvement. Closed with property redevelopment. |
| 20 | 101.83 | LT | 567710400044 | Sivers, Robert R | Unsignalized Full Movement | Close Access - Access to CR 506 available | Closed with property redevelopment or US 160 improvement. |
|  | 101.98 |  |  | Milepost 102 |  |  |  |
| 21 | 102.00 | LT |  | CR 506 | Unsignalized Full Movement | Close Access - Access available via future secondary roadways | Restricted to Right-In, Right Out with US 160 improvement. Closed with a secondary roadway connection between CR 506 and Access 16 (Bayfield Parkway). |
| 22 | 102.24 | LT |  | CR 502 | Unsignalized Full Movement | Close Access - Access available via future secondary roadways | Restricted to Right-In, Right Out upon US 160 improvement. Closed when a secondary roadway connections from CR 502 to CR 506 and to Access 16 (Bayfield Parkway West) are constructed. Once closed, Gated Right-In, Right-Out Emergency Access shall be maintained until equivalent CR 502 response times are available using new stations or new secondary roadway connections. |
| 23 | 102.27 | RT | 567711300800 | Grush, Kevin R \& Terry S \& Trout, Carol | Unsignalized Full Movement | Right-In, Right-Out Ditch Access | Restricted with US 160 improvement. |
| 24 | 102.27 | LT | 567711200005 | Bursey, Lynne T Trustee \& Goodloe, Helen | Unsignalized Full Movement | Right-In, Right-Out Ditch Access | Restricted with US 160 improvement. |
| 25 | 102.37 | RT | 567711300109 | Bayfield, Town of | Unsignalized Full Movement | Right-In, Right-Out | Restricted with property redevelopment or US 160 improvement. |
| 26 | 102.48 | RT | 567711300109 | Bayfield, Town of | Unsignalized Full Movement | 3/4 Movement (Left-In, Right-In, and Right-Out only) | Restricted with property redevelopment or US 160 improvement. |

* No direct highway access
${ }^{1}$ Defined per 2013 CDOT Windshield - Route 160A
${ }^{2}$ Oriented up-milepost
${ }^{3}$ Access may be further restricted if safety or operational issues develop
${ }^{4}$ Redevelopment is a change in land use and/or modification to a property

Access ID No.	Reference Point ${ }^{1}$	Side ${ }^{2}$	Parcel Number	Description/Current Owner	Existing Configuration	Proposed Configuration ${ }^{3}$	Condition ${ }^{4}$
27	102.48	LT	567711200053	Riverside RV LLC	Unsignalized Full Movement Shared Access	3/4 Movement (Left-In, Right-In, and Right-Out only) - Shared Access	Restricted with redevelopment of either property or US 160 improvement. Cross-access currently exists with Property No. 567711100022 and shall be formalized with redevelopment or ownership change of either property. Cross access shall be extended to CR 501 with redevelopment and/or ownership change of Property No. 567711100022.
28	102.81	RT		CR 521	Signalized Full Movement	Signalized Full Movement	
29	102.81	LT		CR 501	Signalized Full Movement	Signalized Full Movement	
30	102.87	RT	567711100011	Elliott, Denise L	Unsignalized Full Movement	Close Access - Access available via Bayfield Parkway	Closed with property redevelopment or US 160 improvement.
	102.90			Milepost 103			
31	103.10	LT		N. Commerce Dr	Unsignalized Full Movement	3/4 Movement (Left-In, Right-In, and Right-Out only)	Restricted with a secondary roadway connection to Access 37 (Bayfield Parkway East), when US 160 is improved, or when required to address a safety issue mitigable by turning movement restrictions.
32	103.10	RT	567712206006	Pine River Trading Company/Bayfield School District	Unsignalized Full Movement	Close Access - Access available via secondary roadways	Restricted with US 160 improvement or restrictions at Access 31 (N. Commerce Drive). Closed with redevelopment affecting traffic operations and/or safety.
33	103.30	LT	567712200004	Peeples Real Estate Investments LLLP	Unsignalized Full Movement	Close Access - Access available via Colorado Drive	Restricted to Right-In, Right-Out with US 160 improvement. Close with property redevelopment or improved access to Colorado Dr. Cross-access agreement required with Property No. 567712200029 for future public access to Access 37 (Bayfield Parkway East) when either property redevelops.
34	103.30	RT	567712200007	Haga, Jerry D \& Zelma	Unsignalized Full Movement	Close Access - Access available via Bayfield Parkway	Closed with property redevelopment or US 160 improvement.
35	103.45	LT	567712200029	Southwestern Foods Inc	Unsignalized Full Movement Shared Access	Close Access - Access available via future secondary roadways	Restricted to Right-In, Right-Out with property redevelopment or US 160 improvement. Cross-access with Property No. 567712200028 exists and shall be formalized to provide future public access to Access 37 (Bayfield Parkway) when either property redevelops. Access Closed with secondary roadway connection for both properties to Access 37 (Bayfield Parkway East). Cross-access agreement required with Property No. 567712200004 for future public access to Access 37 when either property redevelops.
36	103.53	RT		Bayfield Parkway (East)	Unsignalized Full Movement	Full Movement with potential for signalization	Signal shall be implemented only when warranted by current MUTCD standards.
37	103.53	LT		Future Public Street		Full Movement with potential for signalization	Signal shall be implemented only when warranted by current MUTCD standards. Property Nos. 567712200028, 567701400017,567701300016 , and 567712200029 shall access US 160 at this location via future secondary roadway.
38	103.81	RT	567712115010	Yarina, David P \& Brenda A	Unsignalized Full Movement	Right-In, Right-Out Maintenance Access	Restricted with US 160 improvement.

[^3]| Access ID No. | Reference Point ${ }^{1}$ | Side ${ }^{2}$ | Parcel Number | Description/Current Owner | Existing Configuration | Proposed Configuration ${ }^{3}$ | Condition ${ }^{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 39 | 103.82 | LT | 567701400017 | Koinonia Properties LLC | Unsignalized Full Movement | Close Access - Access available via future secondary roadways | Restricted to Right-In, Right-Out with US 160 improvement. Closed with a secondary roadway connection to Access 37 (Bayfield Parkway East). |
| 40 | 100.56 | RT |  | Future US 160/CR 507 intersection |  | Full Movement with potential for signalization | Unsignalized Full Movement intersection with US 160 realignment. Signal shall be implemented only when warranted by current MUTCD standards. |
| 41 | 100.56 | LT |  | Future US 160/CR 507 intersection |  | Full Movement with potential for signalization | Unsignalized Full Movement intersection with US 160 realignment. Signal shall be implemented only when warranted by current MUTCD standards. |








[^0]:    Michael D. McVaugh

[^1]:    US 160 Town of Bayfield Access Control Plan Resolution and Intergovernmental Agreement Page 6 of 7

[^2]:    * No direct highway access
    ${ }^{1}$ Defined per 2013 CDOT Windshield - Route 160A
    ${ }^{2}$ Oriented up-milepost
    ${ }^{3}$ Access may be further restricted if safety or operational issues develop
    ${ }^{4}$ Redevelopment is a change in land use and/or modification to a property

[^3]:    * No direct highway access
    ${ }^{1}$ Defined per 2013 CDOT Windshield - Route 160A
    ${ }^{2}$ Oriented up-milepost
    ${ }^{3}$ Access may be further restricted if safety or operational issues develop
    ${ }^{4}$ Redevelopment is a change in land use and/or modification to a property

