Bayfield Tractor Supply Lot 32, Bayfield Center Drive Bayfield, CO

DRAINAGE REPORT

February 19, 2024

Prepared for:

TSC: Tractor Supply Company West, LLC Tractor Supply Company, A Delaware Corporation

Prepared by:

Michal D. Valencia, P.E.

PO Box 997 Bayfield, CO 81122 970-749-6767

TABLE OF CONTENTS:

TA	BLE OF CONTENTS:	2
<u>LIS</u>	T OF TABLES:	3
<u>I. F</u>	PROJECT OVERVIEW	4
Α.		4
B.	DEVELOPED CONDITIONS	4
C.	METHODOLOGY	4
<u>II.</u>	HYDROLOGY	4
Α.	EXISTING HYDROLOGY	4
1.	Soil Type	4
2.	Historic Drainage Basin	4
3.	PRECIPITATION	5
B.	DEVELOPED HYDROLOGY	5
1.	Developed Drainage Basin	5
2.	Watershed Imperviousness	5
3.	Watershed Length & Slope	6
<u>III.</u>	DESIGN CRITERIA	6
Α.	GENERAL CONCEPTS	6
B.	DETENTION REQUIREMENTS	6
<u>IV.</u>	RECOMMENDED DESIGN	6
Α.	DETENTION POND STORAGE VOLUME	6
B.	DETENTION POND OUTLET STRUCTURE	7
C.	Spillway Sizing	7
D.	DRIVEWAY CULVERT & WEST DRAINAGE SWALE	7
<u>V.</u>	CONCLUSIONS	8
REF	FERENCES	9

LIST OF TABLES:

Table 1:	Rainfall Intensity-Duration-Frequency	5
Table 2:	Percentage Imperviousness Values	5
Table 3:	Detention Volume Requirements	7
Table 4:	Detention Pond Flow	7
Table 5:	Emergency Spillway	7

I. Project Overview

The Bayfield Tractor Supply Company project includes asphalt parking, 21,9130 sf building, outdoor display areas and utilities. It is the intent of this report to show the stormwater runoff from the developed site, including all existing and proposed structures, will be reduced to the historic amounts or less for the 100-year storm event and the required detention volume will be provided.

A. Existing Conditions

The site is Lot 32 of Bayfield Center Subdivision in Bayfield, Colorado. The site generally slopes down from the northeast to the southwest. The site currently drains to the southwest property line where it exits the site as sheet flow into a vegetated drainage.

B. Developed Conditions

The site will continue to drain from the new detention pond that will be located at the southwestern corner of the development. The detention pond will be sized to detain the difference between the 100-year historic and developed flows for the entire site, while releasing at or below the 100-year historic flow rate during the respective storm event for the basin.

C. Methodology

The analysis of storm runoff was based upon the rainfall data taken from the National Oceanic and Atmospheric Administration. The Rational Method was used to determine the quantity of storm runoff. The methodology shown in the Mile High Flood District (formerly known as Urban Drainage and Flood Control District) Drainage Criteria Manual was used in sizing detention pond and the outlet structure. The detention pond provides storage for the difference between the 100-year historic and developed storm runoff. The outlet structure limits the rate of runoff from the site to less than the 100-year storm historic amount.

II. Hydrology

A. Existing Hydrology

1. Soil Type

There is one soil type expected within the drainage basin. The soils at the site are described by the National Resources Conservation Service (NRCS) as Corta loam. (Please see the Appendices.) This soil type is characterized by the NRCS as having the hydrologic group rating "D", which is associated with having a high runoff potential.

2. Historic Drainage Basin

The historic drainage basin for the project generally encompasses the project property and is 7.6 acres. The site slopes down to the south and west.

3. Precipitation

The NOAA Atlas 2 Volume III 6-hour and 24-hour rainfall depths for Zone 2 in Colorado were input into the Drainage Criteria Manual IDF Table to determine the rainfall intensity, duration and frequency for Bayfield, Colorado.

Intensity (in/hr)		Duration (Minutes)							
mensi	y (,)	5	10	15	30	60	120		
(s)	2	2.04	1.58	1.33	.92	.60	.36		
(ea	5	3.00	2.33	1.97	1.36	0.91	0.51		
ζ	10	3.64	2.82	2.38	1.65	1.11	0.61		
enc	25	4.44	3.44	2.91	2.01	1.36	0.75		
nbe	50	5.19	4.03	3.40	2.36	1.61	0.86		
Fre	100	5.90	4.58	3.87	2.68	1.83	0.96		

Table 1: Rainfall Intensity-Duration-Frequency

B. Developed Hydrology

1. Developed Drainage Basin

The developed drainage basin was determined using the finished grading for the site. The developed drainage basin is essentially unchanged from the historic basin.

2. Watershed Imperviousness

To determine the watershed imperviousness, the weighted-area method was used. Each area of imperviousness in the watershed was measured and multiplied by the imperviousness to determine its percentage of the entire site.

The following table is an excerpt from the Drainage Criteria Manual Table RO-3 which shows the recommended percentage impervious values.

Table 2: Percentage Imperviousness Values

Land Use or Surface Characteristics	Recommended Value Imperviousness, i
Building	90
Streets, Paved	100
Lawns, Clay or Sand	0

These values were used to determine the area-weighted imperviousness value for the developed site including the proposed parking, building and native areas. The percentage impervious for the developed site is therefore **i=34.92%**.

3. Watershed Length & Slope

To determine the length and slope for the basin, the flow line to the furthest point in the basin was measured on the developed site. The watershed length of the developed site is 750 feet. The slope was determined by determining the difference in elevation of the watershed length. For this basin, the slope was 3.9%, expressed as a decimal in the worksheet as 0.039 ft/ft.

III. Design Criteria

A. General Concepts

It was the intent of the detention sizing to account for all proposed development on the parcel. The detention pond is needed to capture developed runoff and detain the difference between the 100-year historic and developed runoff. The detention pond is located at the southern edge of the site and captures the runoff from the site while providing enough volume to account for all improvements and increases in runoff. There is no off site run on due to its location near a high point in Bayfield Center Drive. The northern edge is controlled by Bayfield Center Drive, and the east side has an existing ridge that follows near the property line.

B. Detention Requirements

The maximum allowable release rate for the detention pond is the 100-year predevelopment discharge for the basin. The MHFD Detention Basin Outlet Structure Design worksheet calculates the flows for all the storm events and determines the peak outflow based on the outlet structure specified.

The pond is sized to accommodate the 100-year developed stormwater runoff from the site while accounting for the increase from the entire basin. The pond outlet structure was sized to release at the 100-year historic flow during the 100year event. The spillway elevation was set by the 100-year storm volume requirement being met.

IV. Recommended Design

A. Detention Pond Storage Volume

The required storage volume was determined using the MHFD Drainage Criteria Manual Design Form Worksheet, UD-Detention (v4.05). The detention pond was then fitted to the site avoiding wetlands with a reasonable depth. To fit into the available area on site, the pond was fitted near the southern edge of the project outside the wetlands. Please see the Appendices for the pond stage-storage curve. The pond floor will be approximately 10,500 square feet with 3:1 side slopes and a depth of 1.5 feet.

Basin	100-Yr. Volume (cu. ft.)	100-Yr. Level (ft.)
Detention	17,191	1.5

Table 3: Detention Volume Requirements

B. Detention Pond Outlet Structure

The MHFD Drainage Criteria Manual Design Form Worksheet, Detention Design (v4.05) was used to determine the size of the detention pond outlet structure. The outlet for the pond was sized to restrict the outflow for the 100-year storm events to the historic flows during the 100-year storm event.

The flow from the pond is restricted by an outlet pipe. It is a fifteen-inch (15") outlet pipe through the pond berm. The height of the berm is set to detain the 100-year event volume and release at a rate slower than the 100-year historic flow. The Design Form Worksheet and detention pond outlet structure detail can be seen in the Appendices. The results are tabulated below.

Table 4: Detention Pond Flow

Basin	100-Year Pre- Development Peak Flow Rate (cfs)	100-Year Post- Development Peak Flow Rate (cfs)		
Tractor Supply	12.2	5.3		

C. Spillway Sizing

The detention pond is designed with a spillway. The spillway height is determined by the 100-year water surface elevation. The invert is set at or above the 100year maximum ponding depth. The maximum ponding depth during the 100year event for this site will be 1.44 feet. Therefore, the spillway elevation was set at 1.5 feet. The spillway crest length is sized to pass the 100-year peak flow from the undetained design flood.

Table 5: Emergency Spillway

Detention Pond	Depth (feet)	Width (feet)	
Tractor Supply	0.87	5	

D. Driveway Culvert & West Drainage Swale

The driveway culvert was sized for the 100-year peak flow for the small basin it services, Q100=1.8 cfs. The west drainage swale was sized for the 100-year peak flow for the basin, Q100=4.07 cfs. The Rational Method was used to determine the peak flow with the imperviousness of the basin determined by the weighted-

area method. The worksheets can be seen in the Appendices. The culvert worksheet and channel design worksheets are also included in the Appendices.

V. Conclusions

The stormwater runoff from the developed site will be detained to release the flows at less than historic rates for the 100-year storm event. The detention pond has been sized to provide storage volume for the difference in runoff between the 100-year historic and developed storm events. It is felt that the development of this site will not be a detriment to downstream properties.

April Valencien

Michal D. Valencia, P.E. Site Development Solutions, LLC PO Box 997, Bayfield, CO 81122 970-749-6767

References

National Oceanic and Atmospheric Administration (NOAA). 1973. Precipitation-Frequency Atlas of the Western United States, Volume III, Colorado

USDA Natural Resources Conservation Service. Soil Survey of La Plata County, Colorado.

Urban Drainage and Flood Control District. 2001. Urban Storm Drainage Criteria Manual, volumes1-3.

Appendices

- Soil Survey Information
- Developed Drainage Basin
- Bayfield Rainfall IDF Information
- Developed Area-Weighted Imperviousness Worksheet
- Detention Basin Stage-Storage Design Form Worksheet
- Detention Basin Outlet Structure Design Form Worksheet
- West Channel Rational Method Design Form Worksheet
- West Channel Runoff Coefficient Calculation
- West Channel Design Form Worksheet
- Driveway Culvert Basin Ration Method Design Form Worksheet
- Driveway Culvert Design Form Worksheet

National Cooperative Soil Survey

Conservation Service

	MAP INFORMATION
Area of Interest (AOI) Area of Interest	The soil surveys that comprise your AOI were mapped at 1:24,000.
Area of Interest (AOI) Area of Interest Soils Soil Map Unit Soil Map Unit Soil Map Unit Soil Map Unit Soil Map Unit Soil Map Unit Soil Map Unit Clay Spot Clay Spot Clay Spot Closed Depres Gravel Pit Gravel Pit Gravel Pit Gravel Pit Area of Interest Soil Map Unit Display Clay Spot Clay Spot Closed Depres Marsh or swar Mine or Quarr Miscellaneous Perennial Wat Rock Outcrop Saine Spot Sandy Spot Severely Erod	 The sold surveys that comprise your Act were mapped at 1:24,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detaile scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data of the version date(s) listed below. Soil Survey Area: La Plata County Area, Colorado Survey Area Data: Version 21, Aug 22, 2023 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Sep 6, 2021—Seg 17, 2021 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor
 Perennial Wat Rock Outcrop Saline Spot Sandy Spot Severely Erod Sinkhole Slide or Slip Sodic Spot 	So 1:5 Da 17, Thi cor ima shi

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
22	Corta loam, 1 to 3 percent slopes	7.5	100.0%
Totals for Area of Interest		7.5	100.0%

La Plata County Area, Colorado

22—Corta loam, 1 to 3 percent slopes

Map Unit Setting

National map unit symbol: 1yn1 Elevation: 6,700 to 7,200 feet Mean annual precipitation: 18 to 22 inches Mean annual air temperature: 45 to 50 degrees F Frost-free period: 110 to 130 days Farmland classification: Prime farmland if irrigated

Map Unit Composition

Corta and similar soils: 75 percent Minor components: 25 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Corta

Setting

Landform: Pediments, mesas, ridges Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Fine-textured alluvium derived from shale and/or loess

Typical profile

H1 - 0 to 6 inches: loam *H2 - 6 to 60 inches:* clay

Properties and qualities

Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low (0.01 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: High (about 9.2 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 3c Hydrologic Soil Group: D Ecological site: F048AY925CO - Ponderosa Pine Forest Hydric soil rating: No

USDA

Minor Components

Falfa

Percent of map unit: 20 percent Hydric soil rating: No

Plome

Percent of map unit: 5 percent *Hydric soil rating:* No

Data Source Information

Soil Survey Area: La Plata County Area, Colorado Survey Area Data: Version 21, Aug 22, 2023

IDF TABLE FOR ZONE TWO IN THE STATE OF COLORADO

Zone 2: San Juan, Upper Rio Grande, Upper Colorado, and Gunnison River Basins, and Green River Basin below Confluence with the Yampa River

Project: Bayfield, Colorado

Enter the elevation at the center of the watershed:

Elev = 7,025 (input)

1. Rainfall Depth-Duration-Frequency Table

Enter the 6-hour and 24-hour rainfall depths from the NOAA Atlas 2 Volume III in rightmost blue columns

Return	Rainfail Depth in Inches at Time Duration								
Period	5-min	10-min	15-min	30-min	1-hr	2-hr	3-hr	6-hr	24-hr
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	output	output	output	output	output	output	output	input	input
2-yr	0.17	0.27	0.34	0.47	0.60	0.73	0.83	1.00	1.55
5-yr	0.26	0.41	0.52	0.72	0.91	1.06	1.16	1.35	1.95
10-yr	0.32	0.50	0.63	0.88	1.11	1.28	1.39	1.60	2.25
25-yr	0.40	0.61	0.78	1.08	1.36	1.55	1.67	1.90	2.60
50-yr	0.47	0.72	0.91	1.27	1.61	1.81	1.94	2.20	3.00
100-yr	0.53	0.82	1.04	1.45	1.83	2.03	2.16	2.40	3.25

Note: Refer to NOAA Atlas 2 Volume III isopluvial maps for 6-hr and 24-hr rainfall depths.

2. Rainfall Intensity-Duration-Frequency Table

Return		Ra	ainfall Inte	nsity in In	ches Per	Hour at Ti	me Durati	ion	
Period	5-min	10-min	15-min	30-min	1-hr	2-hr	3-hr	6-hr	24-hr
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	output	output	output	output	output	output	output	output	output
2-yr	2.08	1.61	1.36	0.94	0.60	0.37	0.28	0.17	0.06
5-yr	3.15	2.44	2.06	1.43	0.91	0.53	0.39	0.23	0.08
10-yr	3.86	2.99	2.53	1.75	1.11	0.64	0.46	0.27	0.09
25-yr	4.75	3.68	3.11	2.16	1.36	0.77	0.56	0.32	0.11
50-yr	5.59	4.33	3.66	2.54	1.61	0.90	0.65	0.37	0.13
100-yr	6.38	4.95	4.18	2.89	1.83	1.01	0.72	0.40	0.14

One-Hour Rainfall Depth Design Chart

Return Period

Area-Weighting for Runoff Coefficient Calculation

L

Subarea

Flow Direction

Catchm ent

Boundary

Instructions: For each catchment subarea, enter values for A and C.

Subarea 3

Subarea	Area	Runoff	Product
ID	acres	Coeff.	
	Α	C*	CA
input	input	input	output
Gravel	0.00	40.00	0.00
Conc Pave	2.09	100.00	209.44
Building	0.50	90.00	45.31
Landscape	4.98	2.00	9.96
Sum:	7.58	Sum:	264.72

Area-Weighted Runoff Coefficient (sum CA/sum A) = 34.92 *See sheet "Design Info" for inperviousness-based runoff coefficient values.

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.05 (January 2022)

Project:	Bayfield Tra	ctor Supply	(Cubdivision										
ZONE 3	LOT 32, Bayr	leid Center	Subdivision										
	2 CONE 1												
VOLUME EURY WOCY		1											
		100-YE	AR	Durth Transmit	0.10								
PERMANENT	1 AND 2	ORIFIC	E	Depth Increment =	0.10	π Optional		1		Optional			
POOL Example Zone	Configurati	on (Retent	ion Pond)	Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
Watershed Information	Flood Cont	rol Only		Media Surface	0.00	Stage (ft)	(ft) 176.5	(ft) 58.8	(π ⁻) 10 379	Area (rt -)	(acre) 0.238	(π-)	(ac-rt)
Selected BMP Type =	No BMP	1			0.10		177 1	59.4	10 520		0.242	1.045	0.024
Watershed Area =	7 58	acres			0.20		177.7	60.0	10,663		0.245	2 104	0.048
Watershed Length =	7.50	ft			0.20		178.3	60.6	10,005		0.245	3 178	0.010
Watershed Length to Centroid =	350	ft			0.40		178.9	61.2	10,949		0.251	4,265	0.098
Watershed Slope =	0.039	ft/ft		-	0.50		179.5	61.8	11.094		0.255	5,367	0.123
Watershed Imperviousness =	35.00%	percent			0.60		180.1	62.4	11,239		0.258	6,484	0.149
Percentage Hydrologic Soil Group A =	0.0%	percent			0.70		180.7	63.0	11,385		0.261	7,615	0.175
Percentage Hydrologic Soil Group B =	0.0%	percent			0.80		181.3	63.6	11,531		0.265	8,761	0.201
Percentage Hydrologic Soil Groups C/D =	100.0%	percent			0.90		181.9	64.2	11,678		0.268	9,921	0.228
Target WQCV Drain Time =	N/A	hours			1.00		182.5	64.8	11,826		0.271	11,097	0.255
Location for 1-hr Rainfall Depths =	User Input				1.10		183.1	65.4	11,975		0.275	12,287	0.282
After providing required inputs above inc doubter click 'Bun CLINB' to concrete run	cluding 1-hour	rainfall			1.20		183.7	66.0	12,125		0.278	13,492	0.310
the embedded Colorado Urban Hydro	ograph Procedu	ire.	Ontional User Overrides		1.30		184.0	67.2	12,275		0.285	14,/12	0.356
Water Quality Capture Volume (WOCV) =	0.105	acre-feet	acre-feet	Zone 1 (100-year)	1.50		185.5	67.8	12,120		0.289	17,197	0.395
Excess Urban Runoff Volume (EURV) =	0.244	acre-feet	acre-feet		1.60		186.1	68.4	12,730		0.292	18,462	0.424
2-yr Runoff Volume (P1 = 0.6 in.) =	0.091	acre-feet	0.60 inches		1.70		186.7	69.0	12,883		0.296	19,743	0.453
5-yr Runoff Volume (P1 = 0.91 in.) =	0.171	acre-feet	0.91 inches		1.80		187.3	69.6	13,036		0.299	21,039	0.483
10-yr Runoff Volume (P1 = 1.11 in.) =	0.247	acre-feet	1.11 inches		1.90		187.9	70.2	13,191		0.303	22,350	0.513
25-yr Runoff Volume (P1 = 1.36 in.) =	0.421	acre-feet	1.36 inches		2.00		188.5	70.8	13,346		0.306	23,677	0.544
50-yr Runoff Volume (P1 = 1.61 in.) =	0.567	acre-feet	1.61 inches		2.10		189.1	71.4	13,502		0.310	25,019	0.574
LUU-YF KUNOTT VOLUME (P1 = 1.83 in.) =	0.727	acre-feet	1.83 inches		2.20		189.7	/2.0	13,659		0.314	20,3/7	0.607
Approximate 2-vr Detention Volume -	0.106	acre-feet	inches		2.50		100.0	72.0	13,010		0.31/	2/,/51	0.650
Approximate 5-vr Detention Volume =	0.206	acre-feet			2.50		191.5	73.8	14.133		0.324	30.546	0.701
Approximate 10-yr Detention Volume =	0.248	acre-feet			2.60		192.1	74.4	14,292		0.328	31,967	0.734
Approximate 25-yr Detention Volume =	0.295	acre-feet			2.70		192.7	75.0	14,453		0.332	33,405	0.767
Approximate 50-yr Detention Volume =	0.324	acre-feet			2.80		193.3	75.6	14,614		0.335	34,858	0.800
Approximate 100-yr Detention Volume =	0.395	acre-feet			2.90		193.9	76.2	14,775		0.339	36,327	0.834
					3.00		194.5	76.8	14,938		0.343	37,813	0.868
Define Zones and Basin Geometry		г			3.10		195.1	77.4	15,101		0.347	39,315	0.903
Zone 1 Volume (100-year) =	0.395	acre-feet			3.20		195.7	78.0	15,265		0.350	40,833	0.937
Select Zone 2 Storage Volume (Optional) =		acre-feet			3.30		196.3	78.6	15,429		0.354	42,368	1.009
Total Detention Basin Volume -	0 305	acre-feet		-	3.40		190.9	79.2	15,595		0.358	45,919	1.008
Initial Surcharge Volume (ISV) =	N/A	ft ³			3.60		198.1	80.4	15,927		0.366	47.071	1.081
Initial Surcharge Depth (ISD) =	N/A	ft			3.70		198.7	81.0	16,095		0.369	48,672	1.117
Total Available Detention Depth (H _{total}) =	1.50	ft			3.80		199.3	81.6	16,263		0.373	50,290	1.155
Depth of Trickle Channel $(H_{TC}) =$	0.00	ft			3.90		199.9	82.2	16,432		0.377	51,925	1.192
Slope of Trickle Channel $(S_{TC}) =$	0.000	ft/ft			4.00		200.5	82.8	16,601		0.381	53,577	1.230
Slopes of Main Basin Sides (S_{main}) =	3	H:V			4.10		201.1	83.4	16,772		0.385	55,245	1.268
Basin Length-to-Width Ratio $(R_{L/W}) =$	3				4.20		201.7	84.0	16,943		0.389	56,931	1.307
		1,			4.30		202.3	84.6	17,115		0.393	58,634	1.346
Initial Surcharge Area (A _{ISV}) =	0	ft '			4.40		202.9	85.2	17,287		0.397	60,354	1.386
Surcharge Volume Length (L _{ISV}) =	0.0	π e			4.50		203.5	85.8	17,460		0.401	62,091	1.425
Depth of Basin Floor $(H_{T,corr}) =$	0.00	ft			4.70		204.7	87.0	17,809		0.409	65,618	1.506
Length of Basin Floor (L_{FLOOR}) =	176.5	ft			4.80		205.3	87.6	17,984		0.413	67,408	1.547
Width of Basin Floor (W _{FLOOR}) =	58.8	ft			4.90		205.9	88.2	18,160		0.417	69,215	1.589
Area of Basin Floor (A _{FLOOR}) =	10,379	ft ²			5.00		206.5	88.8	18,337		0.421	71,040	1.631
Volume of Basin Floor (V _{FLOOR}) =	0	ft ³			5.10		207.1	89.4	18,515		0.425	72,882	1.673
Depth of Main Basin $(H_{MAIN}) =$	1.50	ft			5.20		207.7	90.0	18,693		0.429	74,743	1.716
Length of Main Basin $(L_{MAIN}) =$	185.5	ft			5.30		208.3	90.6	18,872		0.433	76,621	1.759
Width of Main Basin (W _{MAIN}) =	07.8	n. a 2			5.40		208.9	91.2	19,051		0.437	/0,51/	1.803
Volume of Main Basin (V) =	17 191	п + ³			5.60		209.5	92.4	19,232		0.446	82 364	1.891
Calculated Total Basin Volume (V _{MAIN}) =	0.395	acre-feet			5.70		210.7	93.0	19,595		0.450	84,314	1.936
(-dda)		-			5.80		211.3	93.6	19,777		0.454	86,283	1.981
					5.90 6.00		<u>∠11.9</u> 212.5	94.2 94.8	19,961 20,145		0.458 0.462	88,269 90,275	2.026
					6.10		213.1	95.4	20,329		0.467	92,298	2.119
					6.30		213./ 214.3	96.6	20,515 20,701		0.471	96,401	2.100
					6.40		214.9	97.2	20,888		0.480	98,481	2.261
					6.60		216.1	98.4	21,264		0.488	102,696	2.358
					6.70 6.80		216.7	99.0 99.6	21,453 21.643		0.492	104,832 106.987	2.407
					6.90		217.9	100.2	21,833		0.501	109,160	2.506
					7.00		218.5 219.1	100.8	22,024		0.506	111,353 113,565	2.556
					7.20		219.7	102.0	22,409		0.514	115,796	2.658
					7.40		220.9	103.2	22,796		0.523	120,317	2.762
					7.50		221.5	103.8 104.4	22,991 23.187		0.528	122,606	2.815
					7.70		222.7	105.0	23,383		0.537	127,244	2.921
					7.80		223.3 223.9	105.6 106.2	23,580 23,778		0.541 0.546	129,592 131,960	2.975
					8.00		224.5	106.8	23,976		0.550	134,347	3.084
					8.10 8.20		225.1 225.7	107.4	24,1/5		0.555	130,755 139,182	3.139
					8.30		226.3	108.6	24,576		0.564	141,630	3.251
					8.50		227.5	109.8	24,979		0.573	146,585	3.365
					8.60		228.1	110.4	25,182		0.578	149,093 151.677	3.423 3.481
					8.80		229.3	111.6	25,589		0.587	154,170	3.539
					8.90 9.00		229.9	112.2 112.8	25,794 26,000		0.592	156,740 159,329	3.598 3.658
					9.10		231.1	113.4	26,206		0.602	161,939	3.718
					9.30		232.3	114.6	26,621		0.611	167,222	3.839
					9.40		232.9	115.2 115.8	26,829		0.616	169,895 172,588	3.900
					9.60		234.1	116.4	27,248		0.626	175,302	4.024
					9.70 9.80		234.7 235.3	117.0 117.6	27,459 27,670		0.630	1/8,038 180,794	4.087

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.05 (January 2022)

DETENTION BASIN OUTLET STRUCTURE DESIGN

Project:	Bayfield Tractor S	upply	D-Detention, Ver.	51011 4.05 (Januar)	y 2022)					
Basin ID:	Lot 32, Bayfield C	enter Subdivision								
ZONE 2 ZONE 2 ZONE 1	\bigcirc			Estimated	Estimated					
				Stage (ft)	Volume (ac-ft)	Outlet Type	1			
T ROWAT MOCA			Zone 1 (100-year)	1.50	0.395	Circular Orifice				
ZONE 1 AND 2	ORIFICE		Zone 2							
PERMANENT ORIFICES POOL Example Zone	Configuration (Re	tention Pond)	Zone 3				_			
				Total (all zones)	0.395		<u></u>			
User Input: Orifice at Underdrain Outlet (typical	y used to drain wc	ft (distance below	<u>MP)</u> the filtration modia	curfaca)	Undord	rain Orifica Aroa -	Calculated Parame	ers for Underdrain		
Underdrain Orifice Diameter =	N/A	inches		surface)	Underdrain	Orifice Centroid =	N/A	feet		
User Input: Orifice Plate with one or more orific	es or Elliptical Slot	Weir (typically use	d to drain WQCV ar	nd/or EURV in a sec	dimentation BMP)		Calculated Parame	ters for Plate		
Centroid of Lowest Orifice =	N/A	ft (relative to basir	bottom at Stage =	• 0 ft)	WQ Orifi	ce Area per Row =	N/A	ft ²		
Depth at top of Zone using Orifice Plate =	N/A	ft (relative to basir	bottom at Stage =	• 0 ft)	Ellij	otical Half-Width =	N/A feet			
Orifice Plate: Orifice Vertical Spacing =	N/A	inches			Ellipti	cal Slot Centroid =	N/A feet			
Office Plate. Office Alea per Row -	N/A	sq. inches			L		N/A	π-		
User Input: Stage and Total Area of Each Orific	e Row (numbered)	from lowest to high	est)							
	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)		
Stage of Orifice Centroid (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Orifice Area (sq. inches)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
	Daw Q (antianal)	Daw 10 (antional)	Daw 11 (antional)	Daw 12 (antional)	David 12 (antional)	Daw 14 (antional)	David 15 (antional)	Daw 16 (antional)	1	
Stage of Orifice Controid (ft)	Row 9 (optional)	ROW 10 (optional)	ROW 11 (optional)	Row 12 (optional)	ROW 13 (Optional)	ROW 14 (optional)	Row 15 (optional)	ROW 16 (Optional)		
Orifice Area (so, inches)	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		
					.,				1	
User Input: Vertical Orifice (Circular or Rectang	<u>ular)</u>						Calculated Parame	ters for Vertical Ori	fice	
	Zone 1 Circular	Not Selected					Zone 1 Circular	Not Selected	2	
Invert of Vertical Orifice =	0.00		ft (relative to basin	bottom at Stage =	= 0 ft) Ver	tical Orifice Area =	1.23		ft ²	
Vertical Orifice Diameter -	1.50		inches	i bottom at Stage =	= 0 ft) Vertical	Office Centrold =	0.63		reet	
	15.00		inches							
User Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pipe OR Re	ctangular/Trapezoid	al Weir and No Ou	itlet Pipe)		Calculated Parame	ters for Overflow V	/eir	
	Not Selected	Not Selected					Not Selected	Not Selected		
Overflow Weir Front Edge Height, Ho =			ft (relative to basin b	oottom at Stage = 0	ft) Height of Grate	Upper Edge, $H_t =$			feet	
Overflow Weir Front Edge Length =			feet	C**	Overflow W	eir Slope Length =			feet	
Horiz Length of Weir Sides -			n:v feet	Gra	ate Open Area / 10 verflow Grate Open	Area w/o Debris -			6) 2	
Overflow Grate Type =				0	verflow Grate Open	Area w/ Debris =			ft ²	
Debris Clogging % =			%			,				
User Input: Outlet Pipe w/ Flow Restriction Plate	e (Circular Orifice, I	Restrictor Plate, or I	Rectangular Orifice)	<u>)</u>	<u>Ca</u>	culated Parameters	for Outlet Pipe w/	Flow Restriction P	<u>ate</u>	
	Not Selected	Not Selected					Not Selected	Not Selected	- 7	
Circular Orifice Diameter -			It (distance below be	asin bottom at Stage	$x = 0 \pi$ Outlet	Drifice Centroid =			feet	
			inches	Half-Centr	ral Angle of Restrict	or Plate on Pipe =	N/A	N/A	radians	
User Input: Emergency Spillway (Rectangular or	Trapezoidal)						Calculated Parame	ters for Spillway		
Spillway Invert Stage=	1.50	ft (relative to basir	n bottom at Stage =	0 ft)	Spillway D	esign Flow Depth=	0.87	feet		
Spillway Crest Length =	5.00	feet			Stage at T	op of Freeboard =	3.37	feet		
Spillway End Slopes =	0.00	H:V foot			Basin Area at I	op of Freeboard =	0.36	acres		
Freeboard above Max Water Surface -	1.00	leet			basin volume at i	op of Fleeboard -	1.00			
Routed Hydrograph Results	The user can over	ride the default CUI	HP hydrographs and	l runoff volumes by	v entering new valu	es in the Inflow Hy	drographs table (Co	olumns W through	AF).	
Design Storm Return Period = One-Hour Rainfall Depth (in) =	N/A	EURV N/A	2 Year 0.60	0.91	10 Year 1.11	25 Year 1.36	1.61	1.83	3.14	
CUHP Runoff Volume (acre-ft) =	0.105	0.244	0.091	0.171	0.247	0.421	0.567	0.727	1.553	
Inflow Hydrograph Volume (acre-ft) = $C(H) = C(H) = C(H)$	N/A	N/A	0.091	0.171	0.247	0.421	0.567	0.727	1.553	
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A N/A	N/A N/A	0.0	0.1	0.8	3./	5.0	7.0	18.0	
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.00	0.01	0.11	0.48	0.74	1.00	2.37	
Peak Inflow Q (cfs) =	N/A	N/A	1.3	2.6	3.9	7.1	9.6	12.2	25.7	
Ratio Peak Outflow to Predevelopment O =	0.8 N/A	2.7 N/A	0.3 N/A	6.2	1.2	0.7	4.1	0.7	0.9	
Structure Controlling Flow =	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Spillway	
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Time to Drain 97% of Inflow Volume (hours) =	36	19	41	25	19	13	11	9	6	
Time to Drain 99% of Inflow Volume (hours) =	77	46	82	59	45	31	24	20	12	
Maximum Ponding Depth (ft) =	0.43	0.97	0.25	0.43	0.58	0.93	1.16	1.44	2.21	
Area at Maximum Donding Donth (acros) -	0.25	0.27	0.25	0.25	0.26	0.27	0.78	n 70	0.31	

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program

r		remue the calco								
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5.00 11111	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12
	0:15:00	0.00	0.00	0.00	0.14	0.24	0.15	0.26	0.26	0.78
	0:20:00	0.00	0.00	0.35	0.74	0.96	0.62	0.81	0.90	2.31
	0:25:00	0.00	0.00	0.95	2.08	2.90	1.65	2.31	2.60	8.43
	0:30:00	0.00	0.00	1.28	2.63	3.85	5.44	7.81	9.49	21.73
	0:35:00	0.00	0.00	1.24	2.45	3.66	7.02	9.58	12.20	25.72
	0:40:00	0.00	0.00	1.14	2.17	3.20	7.10	9.49	11.93	24.59
	0:45:00	0.00	0.00	1.00	1.91	2.80	6.33	8.43	10.97	22.46
	0.50.00	0.00	0.00	0.87	1.51	2.00	5.76	7.66	9.89	20.16
	0:55:00	0.00	0.00	0.07	1.05	2.71	4.97	7.00 6.4E	9.60	17.40
	1:00:00	0.00	0.00	0.70	1.77	2.07	7.02	5.75	7.44	17.43
	1:05:00	0.00	0.00	0.67	1.27	1.83	3.99	5.37	7.44	15.23
	1.03.00	0.00	0.00	0.62	1.15	1.66	3.40	4.64	6.69	13.83
	1:10:00	0.00	0.00	0.55	1.05	1.53	2.88	3.91	5.51	11.56
	1:15:00	0.00	0.00	0.49	0.92	1.40	2.44	3.29	4.50	9.58
	1:20:00	0.00	0.00	0.43	0.79	1.21	1.99	2.66	3.53	7.44
	1:25:00	0.00	0.00	0.38	0.66	0.97	1.58	2.11	2.68	5.57
ļ	1:30:00	0.00	0.00	0.33	0.56	0.78	1.19	1.56	1.93	4.01
	1:35:00	0.00	0.00	0.29	0.50	0.67	0.88	1.14	1.37	2.95
	1:40:00	0.00	0.00	0.27	0.44	0.60	0.69	0.89	1.05	2.32
	1:45:00	0.00	0.00	0.26	0.40	0.55	0.58	0.74	0.84	1.89
	1:50:00	0.00	0.00	0.26	0.37	0.52	0.51	0.64	0.70	1.60
	1:55:00	0.00	0.00	0.23	0.34	0.48	0.47	0.57	0.60	1.39
	2:00:00	0.00	0.00	0.20	0.32	0.44	0.44	0.53	0.53	1.23
	2:05:00	0.00	0.00	0.16	0.24	0.33	0.33	0.40	0.38	0.89
	2:10:00	0.00	0.00	0.12	0.18	0.25	0.25	0.29	0.27	0.64
	2:15:00	0.00	0.00	0.12	0.10	0.25	0.25	0.25	0.27	0.04
	2:10:00	0.00	0.00	0.03	0.14	0.13	0.13	0.22	0.20	0.77
	2:20:00	0.00	0.00	0.07	0.10	0.13	0.13	0.16	0.15	0.35
	2:25:00	0.00	0.00	0.05	0.07	0.10	0.10	0.11	0.11	0.25
	2:30:00	0.00	0.00	0.04	0.05	0.07	0.07	0.08	0.08	0.18
	2:35:00	0.00	0.00	0.03	0.04	0.05	0.05	0.06	0.06	0.13
	2:40:00	0.00	0.00	0.02	0.03	0.04	0.04	0.04	0.04	0.09
	2:45:00	0.00	0.00	0.01	0.02	0.02	0.02	0.03	0.03	0.06
	2:50:00	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.01	0.03
	2:55:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
·	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3.40.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4.40.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
·	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ł	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Instructions: For each catchment subarea, enter values for A and C.

Subarea	Area	Runoff	Product
ID	acres	Coeff.	
	Α	C*	CA
input	input	input	output
PAVING	1.01	1.00	1.01
NATIVE	0.91	0.02	0.02
Sum:	1.91	Sum:	1.02

Area-Weighted Runoff Coefficient (sum CA/sum A) = 0.54 *See sheet "Design Info" for inperviousness-based runoff coefficient values.

Critical Flow Analysis - Trapezoidal Channel

Yoc =

Fsc =

0.11 ft

0.03 kip

Centroid on the Critical Flow Area

Critical (min) Specific Force

CIRCULAR CONDUIT FLOW (Normal & Critical Depth Computation) MHFD-Culvert, Version 4.00 (May 2020)

Project: Bayfield Tractor Supply Pipe ID: Driveway Culvert

	Tc Plow Area D	↓¥	
Design Information (Input)	~ _	0.0200	G (G
Pipe Invert Slope	S0 =	0.0200	
Pipe Manning's n-value	n =	0.0240	^
Pipe Diameter	D =	12.00	inches
Design discharge	Q =	2.00	CTS
Full-Flow Capacity (Calculated)			
Full-flow area	Δf =	0.79	sa ft
Full-flow wetted perimeter	Pf =	3 14	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Of =	2.74	cfs
Calculation of Normal Flow Condition	۰ <u>۲</u>	2071	
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>2.23</td><td>radians</td></theta<3.14)<>	Theta =	2.23	radians
Flow area	An =	0.68	sq ft
Top width	Tn =	0.79	ft
Wetted perimeter	Pn =	2.23	ft
Flow depth	Yn =	0.81	ft
Flow velocity	Vn =	3.97	fps
Discharge	Qn =	2.70	cfs
Percent of Full Flow	Flow =	98.7%	of full flow
Normal Depth Froude Number	Fr _n =	0.75	subcritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.99</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.99	radians
Critical flow area	Ac =	0.59	sq ft
Critical top width	Tc =	0.91	ft
Critical flow depth	Yc =	0.70	ft
Critical flow velocity	Vc =	3.38	fps
Critical Depth Froude Number	Fr _c =	0.74	

* Unexpected value for Manning's n